A platform for research: civil engineering, architecture and urbanism
Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents
Abstract Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics, isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS on the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.
Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents
Abstract Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics, isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS on the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.
Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents
Deng, Shubo (author) / Shuai, Danmeng (author) / Yu, Qiang (author) / Huang, Jun (author) / Yu, Gang (author)
2009-03-30
7 pages
Article (Journal)
Electronic Resource
English
A metabolomic investigation of serum perfluorooctane sulfonate and perfluorooctanoate
DOAJ | 2023
|Methods for determination of perfluorooctane sulfonate and perfluorooctanoic acid
British Library Online Contents | 2011
|Progress in Molecularly Imprinted Polymer Microspheres
British Library Online Contents | 2010
|Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles
Taylor & Francis Verlag | 2016
|