A platform for research: civil engineering, architecture and urbanism
Experimental and Numerical Studies on All-Steel Buckling Restrained Brace with Light-Weighted Restrainer
In this paper, authors propose a novel type of light weighted steel buckling restrained brace (LWSBRB) made with two hollow rectangular sections used as restrainers, thus making the all-steel buckling restrained braces additionally light-weighted fulfilling the Euler’s buckling criteria as well. The proposed LWSBRB is cyclically tested and compared with conventional all-steel buckling restrained brace specimen for hysteretic behavior, failure pattern, energy dissipation capacity, cumulative plastic deformation, ductility, compression strength adjustment factor and equivalent viscous damping factor. The tested specimen is also numerically validated by non-linear finite element analysis. It was seen that LWBRB showed higher ductility with optimum energy dissipation. It was also observed that LWBRB induced quite stable hysteretic behavior with higher values of maximum compressive and tensile forces, and can be loaded beyond 2% axial strain to dissipate more energy.
Experimental and Numerical Studies on All-Steel Buckling Restrained Brace with Light-Weighted Restrainer
In this paper, authors propose a novel type of light weighted steel buckling restrained brace (LWSBRB) made with two hollow rectangular sections used as restrainers, thus making the all-steel buckling restrained braces additionally light-weighted fulfilling the Euler’s buckling criteria as well. The proposed LWSBRB is cyclically tested and compared with conventional all-steel buckling restrained brace specimen for hysteretic behavior, failure pattern, energy dissipation capacity, cumulative plastic deformation, ductility, compression strength adjustment factor and equivalent viscous damping factor. The tested specimen is also numerically validated by non-linear finite element analysis. It was seen that LWBRB showed higher ductility with optimum energy dissipation. It was also observed that LWBRB induced quite stable hysteretic behavior with higher values of maximum compressive and tensile forces, and can be loaded beyond 2% axial strain to dissipate more energy.
Experimental and Numerical Studies on All-Steel Buckling Restrained Brace with Light-Weighted Restrainer
Int J Steel Struct
Mishra, Prachi (author) / Vyavahare, Arvind Y. (author)
International Journal of Steel Structures ; 24 ; 176-189
2024-02-01
14 pages
Article (Journal)
Electronic Resource
English