A platform for research: civil engineering, architecture and urbanism
Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings
Abstract The research work on biodiesel becomes more attractive in the context of limited availability of petroleum fuels and rapid increase of harmful emissions from diesel engine using conventional fossil fuels. The present investigation has dealt with the influence of biodiesel-diesel-ethanol (diestrol) water micro emulsion fuel (B60D20E20M) on the performance, emission and combustion characteristics of a diesel engine under different injection pressure and timing. The results revealed that the maximum brake thermal efficiency of 32.4% was observed at an injection pressure of 260 bar and injection timing of 25.5°bTDC. In comparison with diesel, micro emulsion fuel showed reduction in carbon monoxide (CO) and total hydrocarbon (THC) by 40 and 24%, respectively. Further, micro emulsion fuel decreased nitric oxide (NO) emission and smoke emission by 7 and 20.7%, while the carbon dioxide (CO2) emission is similar to that of diesel.
Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings
Abstract The research work on biodiesel becomes more attractive in the context of limited availability of petroleum fuels and rapid increase of harmful emissions from diesel engine using conventional fossil fuels. The present investigation has dealt with the influence of biodiesel-diesel-ethanol (diestrol) water micro emulsion fuel (B60D20E20M) on the performance, emission and combustion characteristics of a diesel engine under different injection pressure and timing. The results revealed that the maximum brake thermal efficiency of 32.4% was observed at an injection pressure of 260 bar and injection timing of 25.5°bTDC. In comparison with diesel, micro emulsion fuel showed reduction in carbon monoxide (CO) and total hydrocarbon (THC) by 40 and 24%, respectively. Further, micro emulsion fuel decreased nitric oxide (NO) emission and smoke emission by 7 and 20.7%, while the carbon dioxide (CO2) emission is similar to that of diesel.
Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings
Kannan, Gopal Radhakrishnan (author)
2017-03-16
14 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2015
|