A platform for research: civil engineering, architecture and urbanism
Lateral Load Behavior of Unreinforced Masonry Spandrels
Spandrels, are usually classified as secondary elements and even though their behaviour has not received adequate focus unlike piers, they significantly affect the seismic capacity of the structure. Masonry spandrels are often damaged and the first structural components that crack within Unreinforced Masonry structures. Despite this, existing analytical methods typically consider a limit case in which the strength of spandrels is either neglected, considered to be infinitely rigid and strong or treated as rotated piers. It is clearly evident that such an assumption is not plausible. Hence, reliable predictive strength models are required. This thesis attempts to re-examine the flexural behaviour of spandrels and proposes an analytical model. The model is based on the interlocking phenomena of the joints at the end-sections of the spandrel and the contiguous masonry. The proposed analytical model is incorporated within a simplified approach to account for the influence of spandrel response on global capacity estimate of URM buildings.
Lateral Load Behavior of Unreinforced Masonry Spandrels
Spandrels, are usually classified as secondary elements and even though their behaviour has not received adequate focus unlike piers, they significantly affect the seismic capacity of the structure. Masonry spandrels are often damaged and the first structural components that crack within Unreinforced Masonry structures. Despite this, existing analytical methods typically consider a limit case in which the strength of spandrels is either neglected, considered to be infinitely rigid and strong or treated as rotated piers. It is clearly evident that such an assumption is not plausible. Hence, reliable predictive strength models are required. This thesis attempts to re-examine the flexural behaviour of spandrels and proposes an analytical model. The model is based on the interlocking phenomena of the joints at the end-sections of the spandrel and the contiguous masonry. The proposed analytical model is incorporated within a simplified approach to account for the influence of spandrel response on global capacity estimate of URM buildings.
Lateral Load Behavior of Unreinforced Masonry Spandrels
Lecture Notes in Civil Engineering
Marano, Giuseppe Carlo (editor) / Ray Chaudhuri, Samit (editor) / Unni Kartha, G. (editor) / Kavitha, P. E. (editor) / Prasad, Reshma (editor) / Achison, Rinu J. (editor) / Kollerathu, Jacob Alex (author) / Menon, Arun (author)
International Conference on Structural Engineering and Construction Management ; 2021
2021-09-04
9 pages
Article/Chapter (Book)
Electronic Resource
English
Lateral Load Behavior of Unreinforced Masonry Spandrels
TIBKAT | 2022
|Quasi-Static Cyclic Tests on Masonry Spandrels
Online Contents | 2012
|Coupling effect between masonry spandrels and piers
Online Contents | 2008
|