A platform for research: civil engineering, architecture and urbanism
Oil Palm Frond (OPF) Based Activated Carbon for Leachate Treatment
Abstract This research focuses on the application of activated carbon made from oil palm frond (OPF) to treat landfill leachate. The studies were performed in batches to investigate the effect of adsorbent dosage and contact time in removing COD, color, and iron (Fe) from Pulau Burung Sanitary Landfill (PBSL) leachate. Significant parameters such as COD, colour, and iron (Fe) were measured using the USEPA Digestion Method, Platinum-Cobalt Standard Method, and Atomic Analyzer Spectroscopy (AAS), respectively. The chemical and physical characteristics of the f the adsorbent were determined by Scanning Electron Spectroscopy (SEM), Elementary Diffraction X-ray (EDX), Brunauer–Emmett–Teller (BET) and Fourier Transform Infrared (FTIR). Results obtained shows the presence of nanopores (412.1–994.6 nm) and oxygen elements (16.76%) on AC’s surface. BET and micropore surface area were 1357.258 and 384.621 m2/g respectively, while pore volume was 0.191 cm3/g. Hydroxyl functional groups were also observed from FTIR analysis. The characteristics of AC prepared resulted in high removal of COD, color, and iron (Fe) were 82.52, 80.25, and 59.25%. This study concluded that AC produced from OPF with phosphoric acid modification is highly potential for adsorption in leachate treatment.
Oil Palm Frond (OPF) Based Activated Carbon for Leachate Treatment
Abstract This research focuses on the application of activated carbon made from oil palm frond (OPF) to treat landfill leachate. The studies were performed in batches to investigate the effect of adsorbent dosage and contact time in removing COD, color, and iron (Fe) from Pulau Burung Sanitary Landfill (PBSL) leachate. Significant parameters such as COD, colour, and iron (Fe) were measured using the USEPA Digestion Method, Platinum-Cobalt Standard Method, and Atomic Analyzer Spectroscopy (AAS), respectively. The chemical and physical characteristics of the f the adsorbent were determined by Scanning Electron Spectroscopy (SEM), Elementary Diffraction X-ray (EDX), Brunauer–Emmett–Teller (BET) and Fourier Transform Infrared (FTIR). Results obtained shows the presence of nanopores (412.1–994.6 nm) and oxygen elements (16.76%) on AC’s surface. BET and micropore surface area were 1357.258 and 384.621 m2/g respectively, while pore volume was 0.191 cm3/g. Hydroxyl functional groups were also observed from FTIR analysis. The characteristics of AC prepared resulted in high removal of COD, color, and iron (Fe) were 82.52, 80.25, and 59.25%. This study concluded that AC produced from OPF with phosphoric acid modification is highly potential for adsorption in leachate treatment.
Oil Palm Frond (OPF) Based Activated Carbon for Leachate Treatment
Adam, N. H. (author) / Yusoff, M. S. (author) / Halim, H. (author)
2019-11-29
10 pages
Article/Chapter (Book)
Electronic Resource
English
DURABILITY OF PALM-TREE-FROND FIBER REINFORCEMENT
Online Contents | 1995
|Assessment of Strength Properties of Biocomposite from Oil Palm Frond
British Library Online Contents | 2011
|Polyethylene-Oil Palm Frond Composites-A Preliminary Study on Mechanical Properties
British Library Online Contents | 1998
|