A platform for research: civil engineering, architecture and urbanism
Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination
High performance is essential for the polyamide (PA) reverse osmosis (RO) membranes during the desalination process. Herein, RO membranes with high permselectivity and anti-biofouling properties were fabricated by nanoparticles incorporation and anti-biofouling grafting. Hydrotalcite (HT) incorporation was performed with a dual role, enhancing water flux and acting as grafting sites. The HT incorporation increased the water flux without sacrificing the salt rejection, compensating for the loss caused by the following grafting reaction. The exposed surface of HT acted as grafting sites for anti-biofouling agent dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOTPAC). The combination of HT incorporation and DMOTPAC grafting endowed RO membranes with high permselectivity and anti-biofouling properties. The water flux of the modified membrane PA-HT-0.06 was 49.8 L/m2·h, which was 16.4% higher than that of the pristine membrane. The salt rejection of PA-HT-0.06 was 99.1%, which was comparable to that of the pristine membrane. As to the fouling of negatively charged lysozyme, the modified membrane’s water flux recovery was superior to that of the pristine membrane (e.g. 86.8% of PA-HT-0.06 compared to 78.2% of PA-pristine). The sterilization rates of PA-HT-0.06 for E. coli and B. subtilis were 97.3% and 98.7%, much higher than those of the pristine membrane (24.0% for E. coli and 26.7% for B. subtilis).
Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination
High performance is essential for the polyamide (PA) reverse osmosis (RO) membranes during the desalination process. Herein, RO membranes with high permselectivity and anti-biofouling properties were fabricated by nanoparticles incorporation and anti-biofouling grafting. Hydrotalcite (HT) incorporation was performed with a dual role, enhancing water flux and acting as grafting sites. The HT incorporation increased the water flux without sacrificing the salt rejection, compensating for the loss caused by the following grafting reaction. The exposed surface of HT acted as grafting sites for anti-biofouling agent dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOTPAC). The combination of HT incorporation and DMOTPAC grafting endowed RO membranes with high permselectivity and anti-biofouling properties. The water flux of the modified membrane PA-HT-0.06 was 49.8 L/m2·h, which was 16.4% higher than that of the pristine membrane. The salt rejection of PA-HT-0.06 was 99.1%, which was comparable to that of the pristine membrane. As to the fouling of negatively charged lysozyme, the modified membrane’s water flux recovery was superior to that of the pristine membrane (e.g. 86.8% of PA-HT-0.06 compared to 78.2% of PA-pristine). The sterilization rates of PA-HT-0.06 for E. coli and B. subtilis were 97.3% and 98.7%, much higher than those of the pristine membrane (24.0% for E. coli and 26.7% for B. subtilis).
Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination
Front. Environ. Sci. Eng.
Tian, Xinxia (author) / Yu, Hui (author) / Yang, Jun (author) / Zhang, Xiaotai (author) / Zhao, Man (author) / Yang, Yang (author) / Sun, Wei (author) / Wei, Yangyang (author) / Zhang, Yin (author) / Wang, Jian (author)
2022-07-01
Article (Journal)
Electronic Resource
English
Biofouling in reverse osmosis systems
Online Contents | 1998
Membrane Biofouling of Seawater Reverse Osmosis Initiated by Sporogenic Bacillus Strain
British Library Online Contents | 2010
|WAVE-POWERED REVERSE-OSMOSIS DESALINATION
British Library Online Contents | 2001
|Reducing biofouling in reverse osmosis membrane modules by functional coatings of feed spacers
BASE | 2020
|