A platform for research: civil engineering, architecture and urbanism
Feasible brittleness evaluation method and suggestion for brittleness reduction of cementitious materials based on stress–strain curve
In this study, a brittleness evaluation index B5 and brittleness–plasticity classification standard for cementitious materials were established, and a suggestion for brittleness reduction was proposed. The results showed that B5 established based on the principle of energy conversion can effectively characterize the variation in the brittleness of cementitious materials with the confining pressure, and the brittleness order of different cementitious materials. Based on the established brittleness–plasticity classification standard, the ranges of B5 corresponding to the weak, high and ideal brittleness are [0.3, 0.6), [0.6, 1) and 1, respectively; and those corresponding to the weak, high and ideal plasticity are [0.1, 0.3), (0, 0.1) and 0, respectively. Finally, a suggestion for brittleness reduction using prismatic aggregates and hybrid nanofibers, flexible and rigid fibers of different sizes was proposed, and the corresponding design process of cementitious materials with weak brittleness was given. The research results in this study provide a basis for the brittleness evaluation of cementitious materials and the design of cementitious materials with weak brittleness.
Feasible brittleness evaluation method and suggestion for brittleness reduction of cementitious materials based on stress–strain curve
In this study, a brittleness evaluation index B5 and brittleness–plasticity classification standard for cementitious materials were established, and a suggestion for brittleness reduction was proposed. The results showed that B5 established based on the principle of energy conversion can effectively characterize the variation in the brittleness of cementitious materials with the confining pressure, and the brittleness order of different cementitious materials. Based on the established brittleness–plasticity classification standard, the ranges of B5 corresponding to the weak, high and ideal brittleness are [0.3, 0.6), [0.6, 1) and 1, respectively; and those corresponding to the weak, high and ideal plasticity are [0.1, 0.3), (0, 0.1) and 0, respectively. Finally, a suggestion for brittleness reduction using prismatic aggregates and hybrid nanofibers, flexible and rigid fibers of different sizes was proposed, and the corresponding design process of cementitious materials with weak brittleness was given. The research results in this study provide a basis for the brittleness evaluation of cementitious materials and the design of cementitious materials with weak brittleness.
Feasible brittleness evaluation method and suggestion for brittleness reduction of cementitious materials based on stress–strain curve
Archiv.Civ.Mech.Eng
Fu, Qiang (author) / Wang, Zhenhua (author) / Zhou, Zhiming (author) / Niu, Ditao (author) / Wang, Yan (author)
2022-09-24
Article (Journal)
Electronic Resource
English
Engineering Index Backfile | 1931
|Evaluation Methodology of Brittleness of Rock Based on Post-Peak Stress–Strain Curves
British Library Online Contents | 2015
|British Library Conference Proceedings | 1995
|