A platform for research: civil engineering, architecture and urbanism
Engineered Geopolymer Composites (EGC) with Ultra-high Strength and Ductility
Engineered Geopolymer Composites (EGC), also known as Strain-Hardening Geopolymer Composites (SHGC), are considered more environmentally friendly than their cement-based counterpart. This study for the first time presents EGC with an ultra-high compressive strength (i.e., over 150 MPa) and an ultra-high tensile ductility (i.e., over 9%) simultaneously. The blended use of fly ash (FA), ground granulated blast slag (GGBS), silica fume, alkali activator, and ultra-high-molecular-weight polyethylene fibers led to the successful development of “Ultra-high-strength & ductility EGC (UHSD-EGC)”. The UHSD-EGC were characterized with excellent multiple cracking and strain-hardening features. In addition, it was found that microstructures of FA-rich geopolymer matrix were looser than those with lower FA/GGBS ratios. The findings arising from this study provided a sound basis for developing EGC materials with ultra-high mechanical properties for sustainable and resilient infrastructure.
Engineered Geopolymer Composites (EGC) with Ultra-high Strength and Ductility
Engineered Geopolymer Composites (EGC), also known as Strain-Hardening Geopolymer Composites (SHGC), are considered more environmentally friendly than their cement-based counterpart. This study for the first time presents EGC with an ultra-high compressive strength (i.e., over 150 MPa) and an ultra-high tensile ductility (i.e., over 9%) simultaneously. The blended use of fly ash (FA), ground granulated blast slag (GGBS), silica fume, alkali activator, and ultra-high-molecular-weight polyethylene fibers led to the successful development of “Ultra-high-strength & ductility EGC (UHSD-EGC)”. The UHSD-EGC were characterized with excellent multiple cracking and strain-hardening features. In addition, it was found that microstructures of FA-rich geopolymer matrix were looser than those with lower FA/GGBS ratios. The findings arising from this study provided a sound basis for developing EGC materials with ultra-high mechanical properties for sustainable and resilient infrastructure.
Engineered Geopolymer Composites (EGC) with Ultra-high Strength and Ductility
RILEM Bookseries
Kunieda, Minoru (editor) / Kanakubo, Toshiyuki (editor) / Kanda, Tetsushi (editor) / Kobayashi, Koichi (editor) / Lao, Jian-Cong (author) / Huang, Bo-Tao (author) / Xu, Ling-Yu (author) / Dai, Jian-Guo (author) / Shah, Surendra P. (author)
International Conference on Strain-Hardening Cement-Based Composites ; 2022
2023-02-01
9 pages
Article/Chapter (Book)
Electronic Resource
English
Novel geopolymer based composites with enhanced ductility
British Library Online Contents | 2007
|