A platform for research: civil engineering, architecture and urbanism
Embodied Carbon Footprint Analysis of Signage Industry: Insights from Two Case Studies
Embodied carbon has recently become a hot topic among environmentalists and designers, especially after the Paris Agreement on climate change. Embodied carbon refers to the carbon emissions associated with the manufacturing and transportation of building materials and the process of construction. The “Global Status Report for Buildings and Construction” report estimated that the building and construction sector alone contributed nearly 37–39% of global carbon emissions in 2017–2020. To tackle embodied carbon, the World Green Building Council (WorldGBC) has set a bold vision to reduce it by at least 40% by 2030 and achieve net-zero operating carbon in all new buildings. The signage industry plays a significant role in the building industry, as signages are a key component of buildings. Signages serve multiple purposes, such as providing information, enhancing brand identity, and promoting safety. Therefore, it is essential to understand the embodied carbon emissions associated with signage materials used to minimise the overall carbon emissions of construction projects. The present paper aims to study the embodied carbon footprint of the signage industry with the help of two case studies. The embodied carbon factors required while estimating the overall footprint of the signages are taken from Environmental Performance in Construction (EPiC) database. The study identifies the aluminum as the major contributor of the embodied emissions in the signage projects. This study provides insight into the other sources of embodied carbon and makes more informed decisions while selecting signage materials used in designs to create sustainable and economic projects. This information helps to increase sustainability and reduce the carbon footprint of signage projects in the early decision-making stages.
Embodied Carbon Footprint Analysis of Signage Industry: Insights from Two Case Studies
Embodied carbon has recently become a hot topic among environmentalists and designers, especially after the Paris Agreement on climate change. Embodied carbon refers to the carbon emissions associated with the manufacturing and transportation of building materials and the process of construction. The “Global Status Report for Buildings and Construction” report estimated that the building and construction sector alone contributed nearly 37–39% of global carbon emissions in 2017–2020. To tackle embodied carbon, the World Green Building Council (WorldGBC) has set a bold vision to reduce it by at least 40% by 2030 and achieve net-zero operating carbon in all new buildings. The signage industry plays a significant role in the building industry, as signages are a key component of buildings. Signages serve multiple purposes, such as providing information, enhancing brand identity, and promoting safety. Therefore, it is essential to understand the embodied carbon emissions associated with signage materials used to minimise the overall carbon emissions of construction projects. The present paper aims to study the embodied carbon footprint of the signage industry with the help of two case studies. The embodied carbon factors required while estimating the overall footprint of the signages are taken from Environmental Performance in Construction (EPiC) database. The study identifies the aluminum as the major contributor of the embodied emissions in the signage projects. This study provides insight into the other sources of embodied carbon and makes more informed decisions while selecting signage materials used in designs to create sustainable and economic projects. This information helps to increase sustainability and reduce the carbon footprint of signage projects in the early decision-making stages.
Embodied Carbon Footprint Analysis of Signage Industry: Insights from Two Case Studies
Environ Sci Eng
Mendonça, Paulo (editor) / Estevez, Alberto T. (editor) / Chang, Yuan (editor) / Paresi, Prudvireddy (author) / Javidan, Fatemeh (author) / Sparks, Paul (author)
International Conference on Green Building ; 2023 ; Stockholm, Sweden
2023-10-18
8 pages
Article/Chapter (Book)
Electronic Resource
English
Embodied Carbon Footprint Analysis of Prefabricated Buildings Considering Assembly Schemes
Springer Verlag | 2022
|The importance of embodied energy in carbon footprint assessment
Online Contents | 2014
|The importance of embodied energy in carbon footprint assessment
Emerald Group Publishing | 2014
|