A platform for research: civil engineering, architecture and urbanism
Abstract While a structural engineer plays an important role in the design and construction of a building, initiatives such as the Paris Agreement are increasing the importance of the structural engineer interest in sustainability with it being pushed to the forefront of the design field as a major concern and priority. Given this, the structural engineer needs to initiate sustainable practices in their design outside of testing new materials, as this takes time to research and incorporate into codes, standards, and everyday practice. The additional cost to construct with a new building material is also a factor and may value engineer itself out of the design. What considerations can a structural engineer take while designing a structure to reduce the embodied carbon in a building without increasing the cost? Concrete contains more embodied carbon than other structural materials, and it is also used as a primary material for foundations. Analyzing different framing methods of the structure can greatly impact the amount of concrete needed for the foundation. By reducing the amount of substructure needed a structural engineer can decrease the amount of embodied carbon and cost. This study evaluates how three different framing methods, two conventionally framed (moment resisting and concentric braced) and one less conventional (diagrid), effect the amount of concrete needed in the foundation and the impact of this in the embodied carbon of the overall structure.
Abstract While a structural engineer plays an important role in the design and construction of a building, initiatives such as the Paris Agreement are increasing the importance of the structural engineer interest in sustainability with it being pushed to the forefront of the design field as a major concern and priority. Given this, the structural engineer needs to initiate sustainable practices in their design outside of testing new materials, as this takes time to research and incorporate into codes, standards, and everyday practice. The additional cost to construct with a new building material is also a factor and may value engineer itself out of the design. What considerations can a structural engineer take while designing a structure to reduce the embodied carbon in a building without increasing the cost? Concrete contains more embodied carbon than other structural materials, and it is also used as a primary material for foundations. Analyzing different framing methods of the structure can greatly impact the amount of concrete needed for the foundation. By reducing the amount of substructure needed a structural engineer can decrease the amount of embodied carbon and cost. This study evaluates how three different framing methods, two conventionally framed (moment resisting and concentric braced) and one less conventional (diagrid), effect the amount of concrete needed in the foundation and the impact of this in the embodied carbon of the overall structure.
Impacts of Foundations on Embodied Carbon
Frisk, Lis (author)
2018-01-01
9 pages
Article/Chapter (Book)
Electronic Resource
English
Embodied Carbon Impacts of California Concrete Mix Designs
TIBKAT | 2020
|Embodied Carbon Impacts of Green Building Rating Systems
Springer Verlag | 2024
|Springer Verlag | 2024
|Springer Verlag | 2024
|