A platform for research: civil engineering, architecture and urbanism
Energy geotechnology
Abstract Energy consumption is closely correlated with quality of life. A 1% annual increase in power production is required to sustain current trends, and a 2% annual increase will be needed to satisfy anticipated growth in the developing world. On average, 85% of all primary energy comes from fossil fuels; this carbon-based economy faces limitations in reserves and climate-change implications. Energy Geotechnology must play a central role in the development of a sustainable energy strategy. Geotechnology is intimately involved in all energy resources, including fossil fuels (petroleum gas and coal), nuclear energy, and renewable sources (wind, solar, hydroelectric, geothermal, biofuels, and tidal energy). While wind and solar energy are surface processes that require limited geotechnical engineering, subsurface geo-storage is a viable alternative to bridge the time-gap between production and demand peaks. Geotechnical engineering is required to manage energy-related waste, ranging from fly ash to CO2 emissions and nuclear waste. Furthermore, geotechnical engineering can contribute to geo-environmental remediation, the design of new facilities in view of life-cycle needs and decommissioning, and geotechnical construction methods that reduce the embodied energy in infrastructure projects. Education programs must be restructured to prepare the next generation of geotechnical engineers to address the needs in the energy sector.
Energy geotechnology
Abstract Energy consumption is closely correlated with quality of life. A 1% annual increase in power production is required to sustain current trends, and a 2% annual increase will be needed to satisfy anticipated growth in the developing world. On average, 85% of all primary energy comes from fossil fuels; this carbon-based economy faces limitations in reserves and climate-change implications. Energy Geotechnology must play a central role in the development of a sustainable energy strategy. Geotechnology is intimately involved in all energy resources, including fossil fuels (petroleum gas and coal), nuclear energy, and renewable sources (wind, solar, hydroelectric, geothermal, biofuels, and tidal energy). While wind and solar energy are surface processes that require limited geotechnical engineering, subsurface geo-storage is a viable alternative to bridge the time-gap between production and demand peaks. Geotechnical engineering is required to manage energy-related waste, ranging from fly ash to CO2 emissions and nuclear waste. Furthermore, geotechnical engineering can contribute to geo-environmental remediation, the design of new facilities in view of life-cycle needs and decommissioning, and geotechnical construction methods that reduce the embodied energy in infrastructure projects. Education programs must be restructured to prepare the next generation of geotechnical engineers to address the needs in the energy sector.
Energy geotechnology
Carlos Santamarina, J. (author) / Cho, Gye-Chun (author)
KSCE Journal of Civil Engineering ; 15 ; 607-610
2011-04-01
4 pages
Article (Journal)
Electronic Resource
English
Online Contents | 2004
NTIS | 1987
|Elsevier | 1983
Geotechnology of waste management
UB Braunschweig | 1998
|Geotechnology in Dispute Resolution
Online Contents | 1995
|