A platform for research: civil engineering, architecture and urbanism
Damping of Structures of Earthquake-Resistant Suspended Buildings
During the construction of multi-storey and high-rise buildings, the principle of suspension of floors has been frequently applied to create the main system of load-bearing structures. Such a solution makes it possible to reduce the loads in load-bearing structures caused by dynamic influences. The effectiveness of the use of suspended structures in earthquake-resistant construction was confirmed by studies of the behavior of such objects in earthquake conditions. The most widespread structural solution of suspended type buildings is a single-core system with a cantilever head. There are many approaches to the realization of floor suspension in buildings with rigid core, each of which has certain advantages and disadvantages. This article discusses some possible options for joining elements of suspended and load-bearing structures of buildings, as well as analyzes the effectiveness of their use. The analysis of the effectiveness of the proposed solutions was carried out by evaluating the displacements of elements and stresses in the load-bearing elements of the calculated models under seismic impacts with different frequency spectra. The parameters of the calculated models were determined in the LIRA 10.12 software package by the finite element method in the temporary realm. The results of computational research of these structural solutions are presented in the article.
Damping of Structures of Earthquake-Resistant Suspended Buildings
During the construction of multi-storey and high-rise buildings, the principle of suspension of floors has been frequently applied to create the main system of load-bearing structures. Such a solution makes it possible to reduce the loads in load-bearing structures caused by dynamic influences. The effectiveness of the use of suspended structures in earthquake-resistant construction was confirmed by studies of the behavior of such objects in earthquake conditions. The most widespread structural solution of suspended type buildings is a single-core system with a cantilever head. There are many approaches to the realization of floor suspension in buildings with rigid core, each of which has certain advantages and disadvantages. This article discusses some possible options for joining elements of suspended and load-bearing structures of buildings, as well as analyzes the effectiveness of their use. The analysis of the effectiveness of the proposed solutions was carried out by evaluating the displacements of elements and stresses in the load-bearing elements of the calculated models under seismic impacts with different frequency spectra. The parameters of the calculated models were determined in the LIRA 10.12 software package by the finite element method in the temporary realm. The results of computational research of these structural solutions are presented in the article.
Damping of Structures of Earthquake-Resistant Suspended Buildings
Lecture Notes in Civil Engineering
Radionov, Andrey A. (editor) / Ulrikh, Dmitrii V. (editor) / Timofeeva, Svetlana S. (editor) / Alekhin, Vladimir N. (editor) / Gasiyarov, Vadim R. (editor) / Belash, T. (author) / Svitlik, I. (author)
International Conference on Construction, Architecture and Technosphere Safety ; 2022 ; Sochi, Russia
2023-03-03
9 pages
Article/Chapter (Book)
Electronic Resource
English
Damping system in earthquake-resistant structures
British Library Conference Proceedings | 1998
|Earthquake-resistant buildings
Engineering Index Backfile | 1964
|Earthquake resistant buildings
Engineering Index Backfile | 1938
|Earthquake resistant buildings
Engineering Index Backfile | 1938
|Improved Viscoelastic Damping for Earthquake-Resistant Wood Structures
British Library Online Contents | 2006
|