A platform for research: civil engineering, architecture and urbanism
THE CONTRIBUTION OF HISTORIC MORTARS ON THE EARTHQUAKE RESISTANCE OF BYZANTINE MONUMENTS
Abstract Structural studies to assess the earthquake resistance of Byzantine monuments have proved that their static and dynamic behaviour depend on the mechanical, chemical and microstructural properties of the masonry mortars and bricks. The crushed brick/lime concrete is classified as an advanced cement-based composite, explaining the longevity of Byzantine monuments. More specifically, the Byzantine monument of the Church of St. Michaels in Vydubytskyi Monastery (11th c.), in Kiev has been studied to provide insights on its effective dynamic properties, during major earthquake in the area. The bricks and mortars are investigated taking under consideration the construction technique known as “concealed course”, by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermal analysis (TG-DTA). They were found to allow for continuous stresses and strains due to the presence of the amorphous hydraulic formations (CSH) at the crushed-brick powder/binder interfaces and in the binding matrix, and be able to absorb greater energy without initiations of fractures. The interpretation of the amorphous nature of the hydraulic formations is compared with the use of fine siliceous sources to accelerate the formation of hydraulic compounds. The determination of the mortar properties indicated that they are of considerable mechanical strength and durability. The results show major similarities with these of the Byzantine monuments in Istanbul (Theodosian Walls and Hagia Sophia - 6th - 11th c.), giving evidence to earthquake resistant construction techniques and materials. Hence, a reverse engineering approach, complying with the deduced criteria is proposed in order to reproduce compatible restoration concrete for earthquake protection of monuments.
THE CONTRIBUTION OF HISTORIC MORTARS ON THE EARTHQUAKE RESISTANCE OF BYZANTINE MONUMENTS
Abstract Structural studies to assess the earthquake resistance of Byzantine monuments have proved that their static and dynamic behaviour depend on the mechanical, chemical and microstructural properties of the masonry mortars and bricks. The crushed brick/lime concrete is classified as an advanced cement-based composite, explaining the longevity of Byzantine monuments. More specifically, the Byzantine monument of the Church of St. Michaels in Vydubytskyi Monastery (11th c.), in Kiev has been studied to provide insights on its effective dynamic properties, during major earthquake in the area. The bricks and mortars are investigated taking under consideration the construction technique known as “concealed course”, by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermal analysis (TG-DTA). They were found to allow for continuous stresses and strains due to the presence of the amorphous hydraulic formations (CSH) at the crushed-brick powder/binder interfaces and in the binding matrix, and be able to absorb greater energy without initiations of fractures. The interpretation of the amorphous nature of the hydraulic formations is compared with the use of fine siliceous sources to accelerate the formation of hydraulic compounds. The determination of the mortar properties indicated that they are of considerable mechanical strength and durability. The results show major similarities with these of the Byzantine monuments in Istanbul (Theodosian Walls and Hagia Sophia - 6th - 11th c.), giving evidence to earthquake resistant construction techniques and materials. Hence, a reverse engineering approach, complying with the deduced criteria is proposed in order to reproduce compatible restoration concrete for earthquake protection of monuments.
THE CONTRIBUTION OF HISTORIC MORTARS ON THE EARTHQUAKE RESISTANCE OF BYZANTINE MONUMENTS
Moropoulou, A. (author) / Labropoulos, K. (author) / Moundoulas, P. (author) / Bakolas, A. (author)
2006-01-01
10 pages
Article/Chapter (Book)
Electronic Resource
English
The Contribution of Historic Mortars on the Earthquake Resistance of Byzantine Monuments
British Library Conference Proceedings | 2006
|Earthquake resistant construction techniques and materials on Byzantine monuments in Kiev
British Library Online Contents | 2000
|Earthquake resistant construction techniques and materials on Byzantine monuments in Kiev
Online Contents | 2000
|Repair mortars for the Byzantine masonries restoration interventions providing earthquake protection
British Library Conference Proceedings | 2003
|Seismic isolation: a new approach to earthquake protection of historic monuments
British Library Conference Proceedings | 2005
|