A platform for research: civil engineering, architecture and urbanism
Geotechnical Properties of Lime Treated Soil Contaminated with Sulphatic Water
Chemical stabilization using calcium-based stabilizers such as lime and cement to improve the properties of soils is well-known technique since previous several decades. However, the longevity potential of calcium-based stabilized soils with change in environmental conditions, particularly, in migration of contaminated sulphatic water is a matter of concern for the geotechnical engineer. The gypsum (Ca2SO4.2H2O) is main source of sulphate and is abundantly available in soils throughout the world, despite of its low solubility rate. The present work is aimed to study the potential of lime stabilized soil contaminated with migration of sulphatic water. Detail experimental works to determine the plasticity, compaction characteristics and one dimensional oedometer swell percentage have been performed in expansive soil alone/and stabilized with optimum lime content with water having sulphate concentrations of 0, 3000, 5000, 10,000 and 20,000 ppm. The result shows that the plasticity of expansive soil contaminated with sulphatic water reduces drastically with lime treatment. Further, Optimum Water Content (OWC) of soil is observed to be less than lime treated soil contaminated with various concentration of sulphatic water, whereas maximum dry density (MDD) of sulphate contaminated soil reduces with lime treatment. It is interesting to observe that lime treated soil exhibits drastic swell after inundating with sulphatic water having different concentration. The formation of highly expansive ettringite mineral by ionic reaction between calcium-aluminium-sulphate in the presence of water results the swell in lime treated soil.
Geotechnical Properties of Lime Treated Soil Contaminated with Sulphatic Water
Chemical stabilization using calcium-based stabilizers such as lime and cement to improve the properties of soils is well-known technique since previous several decades. However, the longevity potential of calcium-based stabilized soils with change in environmental conditions, particularly, in migration of contaminated sulphatic water is a matter of concern for the geotechnical engineer. The gypsum (Ca2SO4.2H2O) is main source of sulphate and is abundantly available in soils throughout the world, despite of its low solubility rate. The present work is aimed to study the potential of lime stabilized soil contaminated with migration of sulphatic water. Detail experimental works to determine the plasticity, compaction characteristics and one dimensional oedometer swell percentage have been performed in expansive soil alone/and stabilized with optimum lime content with water having sulphate concentrations of 0, 3000, 5000, 10,000 and 20,000 ppm. The result shows that the plasticity of expansive soil contaminated with sulphatic water reduces drastically with lime treatment. Further, Optimum Water Content (OWC) of soil is observed to be less than lime treated soil contaminated with various concentration of sulphatic water, whereas maximum dry density (MDD) of sulphate contaminated soil reduces with lime treatment. It is interesting to observe that lime treated soil exhibits drastic swell after inundating with sulphatic water having different concentration. The formation of highly expansive ettringite mineral by ionic reaction between calcium-aluminium-sulphate in the presence of water results the swell in lime treated soil.
Geotechnical Properties of Lime Treated Soil Contaminated with Sulphatic Water
Lecture Notes in Civil Engineering
Patel, Satyajit (editor) / Solanki, C. H. (editor) / Reddy, Krishna R. (editor) / Shukla, Sanjay Kumar (editor) / Shivanshi (author) / Singh, Vijay Bahadur (author) / Jha, Arvind Kumar (author)
2021-04-25
11 pages
Article/Chapter (Book)
Electronic Resource
English
Geotechnical behaviour of lime treated sulphatic soils
British Library Conference Proceedings | 2005
|Sulphatic rocks in Switzerland
Online Contents | 1975
|Microstructure and geotechnical properties of lime-treated expansive clayey soil
Online Contents | 2012
|