A platform for research: civil engineering, architecture and urbanism
Automated identification of steel weld defects, a convolutional neural network improved machine learning approach
This paper proposes a machine-learning-based methodology to automatically classify different types of steel weld defects, including lack of the fusion, porosity, slag inclusion, and the qualified (no defects) cases. This methodology solves the shortcomings of existing detection methods, such as expensive equipment, complicated operation and inability to detect internal defects. The study first collected percussed data from welded steel members with or without weld defects. Then, three methods, the Mel frequency cepstral coefficients, short-time Fourier transform (STFT), and continuous wavelet transform were implemented and compared to explore the most appropriate features for classification of weld statuses. Classic and convolutional neural network-enhanced algorithms were used to classify, the extracted features. Furthermore, experiments were designed and performed to validate the proposed method. Results showed that STFT achieved higher accuracies (up to 96.63% on average) in the weld status classification. The convolutional neural network-enhanced support vector machine (SVM) outperformed six other algorithms with an average accuracy of 95.8%. In addition, random forest and SVM were efficient approaches with a balanced trade-off between the accuracies and the computational efforts.
Automated identification of steel weld defects, a convolutional neural network improved machine learning approach
This paper proposes a machine-learning-based methodology to automatically classify different types of steel weld defects, including lack of the fusion, porosity, slag inclusion, and the qualified (no defects) cases. This methodology solves the shortcomings of existing detection methods, such as expensive equipment, complicated operation and inability to detect internal defects. The study first collected percussed data from welded steel members with or without weld defects. Then, three methods, the Mel frequency cepstral coefficients, short-time Fourier transform (STFT), and continuous wavelet transform were implemented and compared to explore the most appropriate features for classification of weld statuses. Classic and convolutional neural network-enhanced algorithms were used to classify, the extracted features. Furthermore, experiments were designed and performed to validate the proposed method. Results showed that STFT achieved higher accuracies (up to 96.63% on average) in the weld status classification. The convolutional neural network-enhanced support vector machine (SVM) outperformed six other algorithms with an average accuracy of 95.8%. In addition, random forest and SVM were efficient approaches with a balanced trade-off between the accuracies and the computational efforts.
Automated identification of steel weld defects, a convolutional neural network improved machine learning approach
Front. Struct. Civ. Eng.
Shu, Zhan (author) / Wu, Ao (author) / Si, Yuning (author) / Dong, Hanlin (author) / Wang, Dejiang (author) / Li, Yifan (author)
Frontiers of Structural and Civil Engineering ; 18 ; 294-308
2024-02-01
15 pages
Article (Journal)
Electronic Resource
English
Automated classification of civil structure defects based on convolutional neural network
Springer Verlag | 2021
|The Classification of Weld Defects from Ultrasonic Images: A Neural Network Approach
British Library Online Contents | 1993
|Wildfire Identification Based on an Improved Two-Channel Convolutional Neural Network
DOAJ | 2022
|