A platform for research: civil engineering, architecture and urbanism
Assessing the Performance of SWOT Simulator in Estimating River Discharge of a Tropical Basin
River discharge, one of the most informative hydrologic variables for different applications such as water resources management, flood forecasting, and long-term change studies in the water cycle, is measured only across a few stations, however. The measurement and maintenance of river discharge data at in situ hydrological observations (HO) stations are challenging due to the cost involved and the accessibility. Hence, studies often rely on remote sensing methods, particularly satellite data, as a complementary source for estimating river discharge. Interest in space-based observation for remote sensing of river discharge has gained momentum recently due to continuous availability and open access of multiple satellites such as optical, microwave, and altimetry at various spatial and temporal scales globally. Surface Water and Ocean Topography satellite mission (SWOT), to be launched in 2022, aims to estimate discharges in rivers wider than 100 m directly. This study aims to assess the applicability of the SWOT mission to estimate the discharge of Gopalkheda station in the Tapi river basins, a tropical basin in India, using SWOT-like data. In situ, HO station data and satellite data are used in a SWOT Simulator along with multiple river discharge estimating algorithms used by SWOT satellite to derive the discharge series. The results are compared with the in situ river discharge to assess the performance of SWOT-derived river discharge.
Assessing the Performance of SWOT Simulator in Estimating River Discharge of a Tropical Basin
River discharge, one of the most informative hydrologic variables for different applications such as water resources management, flood forecasting, and long-term change studies in the water cycle, is measured only across a few stations, however. The measurement and maintenance of river discharge data at in situ hydrological observations (HO) stations are challenging due to the cost involved and the accessibility. Hence, studies often rely on remote sensing methods, particularly satellite data, as a complementary source for estimating river discharge. Interest in space-based observation for remote sensing of river discharge has gained momentum recently due to continuous availability and open access of multiple satellites such as optical, microwave, and altimetry at various spatial and temporal scales globally. Surface Water and Ocean Topography satellite mission (SWOT), to be launched in 2022, aims to estimate discharges in rivers wider than 100 m directly. This study aims to assess the applicability of the SWOT mission to estimate the discharge of Gopalkheda station in the Tapi river basins, a tropical basin in India, using SWOT-like data. In situ, HO station data and satellite data are used in a SWOT Simulator along with multiple river discharge estimating algorithms used by SWOT satellite to derive the discharge series. The results are compared with the in situ river discharge to assess the performance of SWOT-derived river discharge.
Assessing the Performance of SWOT Simulator in Estimating River Discharge of a Tropical Basin
Lecture Notes in Civil Engineering
Timbadiya, P. V. (editor) / Patel, P. L. (editor) / Singh, Vijay P. (editor) / Sharma, Priyank J. (editor) / Aawar, Taha (author) / Adarsh, M. S. (author) / Dhanya, C. T. (author)
International Conference on Hydraulics, Water Resources and Coastal Engineering ; 2021
2023-05-01
14 pages
Article/Chapter (Book)
Electronic Resource
English
Estimating River Depth from SWOT-Type Observables Obtained by Satellite Altimetry and Imagery
DOAJ | 2017
|