A platform for research: civil engineering, architecture and urbanism
Impacts of Acidic Soil on Infrastructure Development
Soil serves as a primary construction material for roads. Chemical properties of soil, including acidity, and salinity, have the potential to erode concrete, steel structures, road furnishings, and cause land degradation in a vicinity of roads. Acid sulphate soils (ASS) are naturally found in soil sediments and contain iron sulfides, primarily in the form of pyrite. Such soils are typically located in low-lying coastal areas of Australia. Under anerobic conditions, acid sulfate soils do not pose a significant environmental risk. However, when these soils are disturbed by construction activities such as excavation, and temporary or permanent dewatering there is a possibility for the iron sulfides present in the soil to react with oxygen, leading to the generation of sulfuric acid. This acidification process can affect the landscape by lowering its pH and results in releasing of contaminants, including iron, aluminum, and other metals in harmful concentrations. These contaminants have the potential to be transported to waterways, wetlands, and groundwater. Contrary to alkaline soils, acidic soils pose a significant risk to infrastructure, particularly steel or metallic structures. There is a risk of sustained damage to infrastructure over time due to the corrosive effects of acidic water on metallic and concrete structures. Presence of acidic soil can cause decay or absence of roadside vegetation resulting in accelerated soil erosion, leading to substantial and lasting damage to the road structure.
Impacts of Acidic Soil on Infrastructure Development
Soil serves as a primary construction material for roads. Chemical properties of soil, including acidity, and salinity, have the potential to erode concrete, steel structures, road furnishings, and cause land degradation in a vicinity of roads. Acid sulphate soils (ASS) are naturally found in soil sediments and contain iron sulfides, primarily in the form of pyrite. Such soils are typically located in low-lying coastal areas of Australia. Under anerobic conditions, acid sulfate soils do not pose a significant environmental risk. However, when these soils are disturbed by construction activities such as excavation, and temporary or permanent dewatering there is a possibility for the iron sulfides present in the soil to react with oxygen, leading to the generation of sulfuric acid. This acidification process can affect the landscape by lowering its pH and results in releasing of contaminants, including iron, aluminum, and other metals in harmful concentrations. These contaminants have the potential to be transported to waterways, wetlands, and groundwater. Contrary to alkaline soils, acidic soils pose a significant risk to infrastructure, particularly steel or metallic structures. There is a risk of sustained damage to infrastructure over time due to the corrosive effects of acidic water on metallic and concrete structures. Presence of acidic soil can cause decay or absence of roadside vegetation resulting in accelerated soil erosion, leading to substantial and lasting damage to the road structure.
Impacts of Acidic Soil on Infrastructure Development
Lecture Notes in Civil Engineering
Rujikiatkamjorn, Cholachat (editor) / Xue, Jianfeng (editor) / Indraratna, Buddhima (editor) / Iqbal, Ayesha (author) / Medawela, Subhani (author) / Indraratna, Buddhima (author)
International Conference on Transportation Geotechnics ; 2024 ; Sydney, NSW, Australia
2024-10-23
11 pages
Article/Chapter (Book)
Electronic Resource
English
Improving Low-Lying Acidic Floodplains for Infrastructure Development
Springer Verlag | 2024
|Soil impacts on UK infrastructure: current and future climate
Online Contents | 2014
|Infrastructure Development, Residential Growth and Impacts on Public Service Expenditure
BASE | 2015
|Collapsible Soil Engineering in Highway Infrastructure Development
Online Contents | 2002
|Infrastructure Impacts of Iowa's Renewable Energy
British Library Online Contents | 2011
|