A platform for research: civil engineering, architecture and urbanism
Civil Engineering for Multi-hazard Risk Reduction-An Introduction
The modern built environment faces diverse hazards, emphasizing the need for engineering practices prioritizing safety and resilience. This exploration delves into key aspects of civil engineering: Accessibility and Convenience, Geotechnical Engineering, Risk Analysis and Structural Analysis. It aims to provide a foundational understanding of multidisciplinary approaches used to mitigate risks in civil engineering. In the realm of Accessibility and Convenience, research explores alternative construction materials such as bamboo and innovative concrete formulations. Studies investigate the use of metakaolin, ground granulated blast-furnace slag, alkali activated concrete and coconut coir fibres to enhance durability and sustainability. Polyethylene glycol and chemical admixtures like red mud and silica fume are also examined for their impact on concrete properties. Geotechnical Engineering focuses on subsurface characteristics crucial for safety assessments. Soft computing techniques, including Group Method of Data Handling and Random Forests Classifier, are applied for slope stability analysis. Digital Image Correlation is employed to study soil displacement, while artificial intelligence models predict residual strength post liquefaction. Risk Analysis and Approaches cover climate-smart agriculture, floodplain mapping, solid waste management, and disaster resilience. Machine learning aids in land use classification, flood forecasting, earthquake prediction and identifying risk factors in road construction. The study also evaluates safety distances around gas and oil pipelines. Structural Analysis involves transient and modal analysis of structures under various loads. Contributions include crack propagation studies using digital image segmentation and the application of deep convolutional neural networks for surface crack detection. Building surface crack detection, construction sequence analysis and seismic studies on different building types are explored for structural integrity. The overarching theme underscores the interdisciplinary nature of civil engineering in addressing contemporary challenges. These include climate change impacts, disaster resilience, sustainable materials, and advanced technologies like IoT and AI. As civil engineering plays a pivotal role in developing hazard-resilient structures, the presented research contributes to the evolving landscape of risk reduction and safety enhancement in the built environment.
Civil Engineering for Multi-hazard Risk Reduction-An Introduction
The modern built environment faces diverse hazards, emphasizing the need for engineering practices prioritizing safety and resilience. This exploration delves into key aspects of civil engineering: Accessibility and Convenience, Geotechnical Engineering, Risk Analysis and Structural Analysis. It aims to provide a foundational understanding of multidisciplinary approaches used to mitigate risks in civil engineering. In the realm of Accessibility and Convenience, research explores alternative construction materials such as bamboo and innovative concrete formulations. Studies investigate the use of metakaolin, ground granulated blast-furnace slag, alkali activated concrete and coconut coir fibres to enhance durability and sustainability. Polyethylene glycol and chemical admixtures like red mud and silica fume are also examined for their impact on concrete properties. Geotechnical Engineering focuses on subsurface characteristics crucial for safety assessments. Soft computing techniques, including Group Method of Data Handling and Random Forests Classifier, are applied for slope stability analysis. Digital Image Correlation is employed to study soil displacement, while artificial intelligence models predict residual strength post liquefaction. Risk Analysis and Approaches cover climate-smart agriculture, floodplain mapping, solid waste management, and disaster resilience. Machine learning aids in land use classification, flood forecasting, earthquake prediction and identifying risk factors in road construction. The study also evaluates safety distances around gas and oil pipelines. Structural Analysis involves transient and modal analysis of structures under various loads. Contributions include crack propagation studies using digital image segmentation and the application of deep convolutional neural networks for surface crack detection. Building surface crack detection, construction sequence analysis and seismic studies on different building types are explored for structural integrity. The overarching theme underscores the interdisciplinary nature of civil engineering in addressing contemporary challenges. These include climate change impacts, disaster resilience, sustainable materials, and advanced technologies like IoT and AI. As civil engineering plays a pivotal role in developing hazard-resilient structures, the presented research contributes to the evolving landscape of risk reduction and safety enhancement in the built environment.
Civil Engineering for Multi-hazard Risk Reduction-An Introduction
Lecture Notes in Civil Engineering
Sreekeshava, K. S. (editor) / Kolathayar, Sreevalsa (editor) / Vinod Chandra Menon, N. (editor) / Sreekeshava, K. S. (author) / Kolathayar, Sreevalsa (author) / Vinod Chandra Menon, N. (author) / Bhargavi.C (author)
International Conference on Interdisciplinary Approaches in Civil Engineering for Sustainable Development ; 2023
2024-03-26
10 pages
Article/Chapter (Book)
Electronic Resource
English
Civil Engineering for Multi-Hazard Risk Reduction : Select Proceedings of IACESD 2023
Springer Verlag | 2024
|Disaster Risk Reduction and Civil Engineering—An Introduction
Springer Verlag | 2021
|Multi-hazard Approaches to Civil Infrastructure Engineering
UB Braunschweig | 2016
|Civil Engineering for Disaster Risk Reduction
UB Braunschweig | 2022
|