A platform for research: civil engineering, architecture and urbanism
Drained deformation characteristics of granular soil under pure principal stress axis rotation: impact of sample preparation
The distinct initial fabrics of sand may give rise to dramatically different responses to the applied loading, as evidenced by numerous laboratory tests reported in the literature. In this study, both dry deposition (DD) and moist tamping (MT) methods were employed to prepare sand specimens to generate different initial fabrics. Drained tests were conducted on these specimens under pure principal stress axis rotation while keeping the principal stress components constant. The factors that may influence the deformation characteristics of sand, such as deviatoric stress q, coefficient of intermediate principal stress b, and mean principal stress p, were also taken into consideration in the tests. Test results show that the developments of three normal strain components with number of cycles are very different between DD and MT specimens, which is also closely related to the factors of q, b, and p. It is seen that DD specimen tends to generate larger contractive volumetric strains than MT specimen, which is more significant when q and b increase or p decreases. The shear stiffness of DD specimen is greater than that of MT specimen. The shear modulus ratio, Gj/G1, increases with the increase of q and b or the decrease of p, which is more prominent in DD specimen than in MT specimen. It is also shown that DD specimen appears to exhibit stronger non-coaxiality than MT specimen, in which such difference of non-coaxiality tends to decrease with the increase in number of cycles.
Drained deformation characteristics of granular soil under pure principal stress axis rotation: impact of sample preparation
The distinct initial fabrics of sand may give rise to dramatically different responses to the applied loading, as evidenced by numerous laboratory tests reported in the literature. In this study, both dry deposition (DD) and moist tamping (MT) methods were employed to prepare sand specimens to generate different initial fabrics. Drained tests were conducted on these specimens under pure principal stress axis rotation while keeping the principal stress components constant. The factors that may influence the deformation characteristics of sand, such as deviatoric stress q, coefficient of intermediate principal stress b, and mean principal stress p, were also taken into consideration in the tests. Test results show that the developments of three normal strain components with number of cycles are very different between DD and MT specimens, which is also closely related to the factors of q, b, and p. It is seen that DD specimen tends to generate larger contractive volumetric strains than MT specimen, which is more significant when q and b increase or p decreases. The shear stiffness of DD specimen is greater than that of MT specimen. The shear modulus ratio, Gj/G1, increases with the increase of q and b or the decrease of p, which is more prominent in DD specimen than in MT specimen. It is also shown that DD specimen appears to exhibit stronger non-coaxiality than MT specimen, in which such difference of non-coaxiality tends to decrease with the increase in number of cycles.
Drained deformation characteristics of granular soil under pure principal stress axis rotation: impact of sample preparation
Acta Geotech.
Sun, Qi (author) / Dong, Quanyang (author) / Cai, Yuanqiang (author) / Wang, Jun (author) / Song, Xuewei (author)
Acta Geotechnica ; 16 ; 1755-1772
2021-06-01
18 pages
Article (Journal)
Electronic Resource
English
Deformation , Initial fabric , Non-coaxiality , Principal stress axis rotation , Sand Engineering , Geoengineering, Foundations, Hydraulics , Solid Mechanics , Geotechnical Engineering & Applied Earth Sciences , Soil Science & Conservation , Soft and Granular Matter, Complex Fluids and Microfluidics
British Library Online Contents | 2018
|Taylor & Francis Verlag | 2016
|Drained Deformation Behavior of Anisotropic Sands during Cyclic Rotation of Principal Stress Axes
Online Contents | 2010
|