A platform for research: civil engineering, architecture and urbanism
Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization
Abstract In a recent publication, we presented a new multiobjective decision-making tool for use in conceptual engineering design. In the present paper, we provide important developments that support the next phase in the evolution of the tool. These developments, together with those of our previous work, provide a concept selection approach that capitalizes on the benefits of computational optimization. Specifically, the new approach uses the efficiency and effectiveness of optimization to rapidly compare numerous designs, and characterize the tradeoff properties within the multiobjective design space. As such, the new approach differs significantly from traditional (non-optimization based) concept selection approaches where, comparatively speaking, significant time is often spent evaluating only a few points in the design space. Under the new approach, design concepts are evaluated using a so-calleds-Pareto frontier; this frontier originates from the Pareto frontiers of various concepts, and is the Pareto frontier for thesetof design concepts. An important characteristic of the s-Pareto frontier is that it provides a foundation for analyzing tradeoffs between design objectives and the tradeoffs between design concepts. The new developments presented in this paper include; (i) the notion ofminimally representingthe s-Pareto frontier, (ii) the quantification of concept goodness using s-Pareto frontiers, (iii) the development of an interactive design space exploration approach that can be used to visualizen-dimensional s-Pareto frontiers, and (iv) s-Pareto frontier-based approaches for considering uncertainty in concept selection. Simple structural examples are presented that illustrate representative applications of the proposed method.
Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization
Abstract In a recent publication, we presented a new multiobjective decision-making tool for use in conceptual engineering design. In the present paper, we provide important developments that support the next phase in the evolution of the tool. These developments, together with those of our previous work, provide a concept selection approach that capitalizes on the benefits of computational optimization. Specifically, the new approach uses the efficiency and effectiveness of optimization to rapidly compare numerous designs, and characterize the tradeoff properties within the multiobjective design space. As such, the new approach differs significantly from traditional (non-optimization based) concept selection approaches where, comparatively speaking, significant time is often spent evaluating only a few points in the design space. Under the new approach, design concepts are evaluated using a so-calleds-Pareto frontier; this frontier originates from the Pareto frontiers of various concepts, and is the Pareto frontier for thesetof design concepts. An important characteristic of the s-Pareto frontier is that it provides a foundation for analyzing tradeoffs between design objectives and the tradeoffs between design concepts. The new developments presented in this paper include; (i) the notion ofminimally representingthe s-Pareto frontier, (ii) the quantification of concept goodness using s-Pareto frontiers, (iii) the development of an interactive design space exploration approach that can be used to visualizen-dimensional s-Pareto frontiers, and (iv) s-Pareto frontier-based approaches for considering uncertainty in concept selection. Simple structural examples are presented that illustrate representative applications of the proposed method.
Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization
Mattson, Christopher A. (author) / Messac, Achille (author)
Optimization and Engineering ; 6 ; 85-115
2005-03-01
31 pages
Article (Journal)
Electronic Resource
English
Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization
Online Contents | 2005
|Efficient Pareto Frontier Exploration using Surrogate Approximations
Springer Verlag | 2001
|Efficient Pareto Frontier Exploration using Surrogate Approximations
Online Contents | 2001
|British Library Online Contents | 2017
|Pareto surface construction for multi-objective optimization under uncertainty
British Library Online Contents | 2017
|