A platform for research: civil engineering, architecture and urbanism
The Use of BIM for Robotic 3D Concrete Printing
Digitization has proven its added value to the construction industry, particularly through Building Information Modeling (BIM). This digital shift addresses all phases and aspects of construction projects. Additive manufacturing (AM) through 3D Concrete Printing (3DCP), is one of the most remarkable technologies which development has accelerated in recent years. BIM and 3DCP are evolving in parallel, though, and the potential for their integrated use or convergence has not yet been sufficiently studied. Indeed, the association of these two systems faces challenges in terms of interoperability. This concept is not only limited to the ability to exchange information between two software, but also concerns the procedural, organizational and contextual aspects of these systems. Nevertheless, design process has evolved with the help of computational design tools and recent developments such as Rhino.Inside.Revit and Speckle. This study aims to streamline the use of BIM in the 3DCP process. An overview of the technological interoperability between these two systems is presented. The necessary approaches to be used in concrete additive manufacturing applied to construction are defined. Finally, this research suggests the optimal approach for the application of BIM to 3DCP and identifies the obstacles encountered through a case study. Possible development paths for a better adoption of BIM in 3D concrete printing are identified.
The Use of BIM for Robotic 3D Concrete Printing
Digitization has proven its added value to the construction industry, particularly through Building Information Modeling (BIM). This digital shift addresses all phases and aspects of construction projects. Additive manufacturing (AM) through 3D Concrete Printing (3DCP), is one of the most remarkable technologies which development has accelerated in recent years. BIM and 3DCP are evolving in parallel, though, and the potential for their integrated use or convergence has not yet been sufficiently studied. Indeed, the association of these two systems faces challenges in terms of interoperability. This concept is not only limited to the ability to exchange information between two software, but also concerns the procedural, organizational and contextual aspects of these systems. Nevertheless, design process has evolved with the help of computational design tools and recent developments such as Rhino.Inside.Revit and Speckle. This study aims to streamline the use of BIM in the 3DCP process. An overview of the technological interoperability between these two systems is presented. The necessary approaches to be used in concrete additive manufacturing applied to construction are defined. Finally, this research suggests the optimal approach for the application of BIM to 3DCP and identifies the obstacles encountered through a case study. Possible development paths for a better adoption of BIM in 3D concrete printing are identified.
The Use of BIM for Robotic 3D Concrete Printing
Lecture Notes in Civil Engineering
Walbridge, Scott (editor) / Nik-Bakht, Mazdak (editor) / Ng, Kelvin Tsun Wai (editor) / Shome, Manas (editor) / Alam, M. Shahria (editor) / el Damatty, Ashraf (editor) / Lovegrove, Gordon (editor) / Anane, W. (author) / Iordanova, I. (author) / Ouellet-Plamondon, C. (author)
Canadian Society of Civil Engineering Annual Conference ; 2021
Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021 ; Chapter: 25 ; 325-336
2022-05-30
12 pages
Article/Chapter (Book)
Electronic Resource
English
The Use of BIM for Robotic 3D Concrete Printing
TIBKAT | 2023
|Shape-Env:Camera-enhanced robotic terrain-shaping for complex 3D concrete printing
BASE | 2023
|Environmental Impacts of 6-Axes Robotic Arm for 3D Concrete Printing
Springer Verlag | 2020
|Towards Robotic Swarm Printing
British Library Online Contents | 2014
|