A platform for research: civil engineering, architecture and urbanism
Vorhersage der Fließgewässertemperaturen in österreichischen Einzugsgebieten mittels Machine Learning-Verfahren
Die Fließgewässertemperatur ist ein essenzieller Umweltfaktor, der das Potenzial hat, sowohl ökologische als auch sozio-ökonomische Rahmenbedingungen im Umfeld eines Gewässers zu verändern. Um Fließgewässertemperaturen als Grundlage für effektive Anpassungsstrategien für zukünftige Veränderungen (z. B. durch den Klimawandel) berechnen zu können, sind adäquate Modellierungskonzepte notwendig. Die vorliegende Studie untersucht hierfür 6 Machine Learning-Modelle: Schrittweise Lineare Regression, Random Forest, eXtreme Gradient Boosting, Feedforward Neural Networks und zwei Arten von Recurrent Neural Networks. Die Modelle wurden an 10 österreichischen Einzugsgebieten mit unterschiedlichen physiographischen Eigenschaften und Eingangsdatenkombinationen getestet. Die Hyperparameter der angewandten Modelle wurden mittels Bayes’scher Hyperparameteroptimierung optimiert. Um die Ergebnisse mit anderen Studien vergleichbar zu machen, wurden die Vorhersagen der 6 Machine Learning-Modelle den Ergebnissen der linearen Regression und dem häufig verwendeten und bekannten Wassertemperaturmodell air2stream gegenübergestellt.
Von den 6 getesteten Modellen zeigten die Feedforward Neural Networks und das eXtreme Gradient Boosting die besten Vorhersagen in jeweils 4 von 10 Einzugsgebieten. Mit einem durchschnittlichen RMSE (Wurzel der mittleren Fehlerquadratsumme; root mean squared error) von 0,55 °C konnten die getesteten Modelle die Fließgewässertemperaturen deutlich besser prognostizieren als die lineare Regression (1,55 °C) und air2stream (0,98 °C). Generell zeigten die Ergebnisse der 6 Modelle eine sehr vergleichbare Leistung mit lediglich einer mittleren Abweichung um den Medianwert von 0,08 °C zwischen den einzelnen Modellen. Im größten untersuchten Einzugsgebiet – Donau bei Kienstock – wiesen Recurrent Neural Networks die höchste Modellgüte auf, was darauf hinweist, dass sie sich am besten eignen, wenn im Einzugsgebiet Prozesse mit langfristigen Abhängigkeiten ausschlaggebend sind. Die Wahl der Hyperparameter beeinflusste die Vorhersagefähigkeit der Modelle stark, was die Bedeutung der Hyperparameteroptimierung besonders hervorhebt.
Die Ergebnisse dieser Studie fassen die Bedeutung unterschiedlicher Eingangsdaten, Modelle und Trainingscharakteristiken für die Modellierung von mittleren täglichen Fließgewässertemperaturen zusammen. Gleichzeitig dient diese Studie als Basis für die Entwicklung zukünftiger Modelle für eine regionale Fließgewässertemperaturvorhersage. Die getesteten Modelle stehen im open source R‑Paket wateRtemp allen AnwenderInnen der Forschungsgemeinschaft und der Praxis zur Verfügung.
Vorhersage der Fließgewässertemperaturen in österreichischen Einzugsgebieten mittels Machine Learning-Verfahren
Die Fließgewässertemperatur ist ein essenzieller Umweltfaktor, der das Potenzial hat, sowohl ökologische als auch sozio-ökonomische Rahmenbedingungen im Umfeld eines Gewässers zu verändern. Um Fließgewässertemperaturen als Grundlage für effektive Anpassungsstrategien für zukünftige Veränderungen (z. B. durch den Klimawandel) berechnen zu können, sind adäquate Modellierungskonzepte notwendig. Die vorliegende Studie untersucht hierfür 6 Machine Learning-Modelle: Schrittweise Lineare Regression, Random Forest, eXtreme Gradient Boosting, Feedforward Neural Networks und zwei Arten von Recurrent Neural Networks. Die Modelle wurden an 10 österreichischen Einzugsgebieten mit unterschiedlichen physiographischen Eigenschaften und Eingangsdatenkombinationen getestet. Die Hyperparameter der angewandten Modelle wurden mittels Bayes’scher Hyperparameteroptimierung optimiert. Um die Ergebnisse mit anderen Studien vergleichbar zu machen, wurden die Vorhersagen der 6 Machine Learning-Modelle den Ergebnissen der linearen Regression und dem häufig verwendeten und bekannten Wassertemperaturmodell air2stream gegenübergestellt.
Von den 6 getesteten Modellen zeigten die Feedforward Neural Networks und das eXtreme Gradient Boosting die besten Vorhersagen in jeweils 4 von 10 Einzugsgebieten. Mit einem durchschnittlichen RMSE (Wurzel der mittleren Fehlerquadratsumme; root mean squared error) von 0,55 °C konnten die getesteten Modelle die Fließgewässertemperaturen deutlich besser prognostizieren als die lineare Regression (1,55 °C) und air2stream (0,98 °C). Generell zeigten die Ergebnisse der 6 Modelle eine sehr vergleichbare Leistung mit lediglich einer mittleren Abweichung um den Medianwert von 0,08 °C zwischen den einzelnen Modellen. Im größten untersuchten Einzugsgebiet – Donau bei Kienstock – wiesen Recurrent Neural Networks die höchste Modellgüte auf, was darauf hinweist, dass sie sich am besten eignen, wenn im Einzugsgebiet Prozesse mit langfristigen Abhängigkeiten ausschlaggebend sind. Die Wahl der Hyperparameter beeinflusste die Vorhersagefähigkeit der Modelle stark, was die Bedeutung der Hyperparameteroptimierung besonders hervorhebt.
Die Ergebnisse dieser Studie fassen die Bedeutung unterschiedlicher Eingangsdaten, Modelle und Trainingscharakteristiken für die Modellierung von mittleren täglichen Fließgewässertemperaturen zusammen. Gleichzeitig dient diese Studie als Basis für die Entwicklung zukünftiger Modelle für eine regionale Fließgewässertemperaturvorhersage. Die getesteten Modelle stehen im open source R‑Paket wateRtemp allen AnwenderInnen der Forschungsgemeinschaft und der Praxis zur Verfügung.
Vorhersage der Fließgewässertemperaturen in österreichischen Einzugsgebieten mittels Machine Learning-Verfahren
Prediction of stream water temperatures in Austrian catchments using machine learning methods
Feigl, Moritz (author) / Lebiedzinski, Katharina (author) / Herrnegger, Mathew (author) / Schulz, Karsten (author)
Österreichische Wasser- und Abfallwirtschaft ; 73 ; 308-328
2021-08-01
21 pages
Article (Journal)
Electronic Resource
German
Fließgewässertemperatur , Machine Learning , Wassertemperaturmodellierung , Österreich , Modellvergleich Stream water temperature , Machine Learning , Water temperature modelling , Austria , Model comparison Engineering , Engineering, general , Water Industry/Water Technologies , Chemistry/Food Science, general , Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution , Waste Management/Waste Technology
Springer Verlag | 2022
|Bestimmung des Schneevorrates in Einzugsgebieten mittels Fernerkundungsmethoden
Springer Verlag | 2009
|HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2018
|