A platform for research: civil engineering, architecture and urbanism
Neutron Diffraction and the Mechanical Behavior of Geological Materials
Abstract Establishing methods to monitor how deformation is accommodated at the grain scale within samples during mechanical tests has a key part to play in advancing our understanding of the mechanical properties of polycrystalline materials. This information is essential, both for testing the assumptions and approximations used in theoretical analyses designed to predict these properties from the properties of their constituent grains, as well as for using such analyses to interrogate the results of deformation experiments. Conventional deformation experiments (particularly those on nonporous materials) generally provide only whole sample properties, and information about how the deformation has been accommodated within the sample is usually restricted to that which can be recovered from an analysis of the experimental run products. However, the penetrating power of neutrons means that if the deformation experiment is performed on a neutron beam line, the deformation behavior within the sample can be monitored as it is being deformed from diffraction patterns collated at different stages of the deformation. Over the past 20 years, numerous studies on engineering materials have exploited this strategy. In the following contribution, parallel work on geological materials is reviewed with the aim of illustrating the potential of the approach for examining matters of mechanical property characterization that are of particular interest in the earth sciences.
Neutron Diffraction and the Mechanical Behavior of Geological Materials
Abstract Establishing methods to monitor how deformation is accommodated at the grain scale within samples during mechanical tests has a key part to play in advancing our understanding of the mechanical properties of polycrystalline materials. This information is essential, both for testing the assumptions and approximations used in theoretical analyses designed to predict these properties from the properties of their constituent grains, as well as for using such analyses to interrogate the results of deformation experiments. Conventional deformation experiments (particularly those on nonporous materials) generally provide only whole sample properties, and information about how the deformation has been accommodated within the sample is usually restricted to that which can be recovered from an analysis of the experimental run products. However, the penetrating power of neutrons means that if the deformation experiment is performed on a neutron beam line, the deformation behavior within the sample can be monitored as it is being deformed from diffraction patterns collated at different stages of the deformation. Over the past 20 years, numerous studies on engineering materials have exploited this strategy. In the following contribution, parallel work on geological materials is reviewed with the aim of illustrating the potential of the approach for examining matters of mechanical property characterization that are of particular interest in the earth sciences.
Neutron Diffraction and the Mechanical Behavior of Geological Materials
Covey-Crump, Stephen J. (author) / Schofield, Paul F. (author)
2009-01-01
26 pages
Article/Chapter (Book)
Electronic Resource
English
Special issue on "Neutron Diffraction Characterization of Mechanical Behavior"
British Library Online Contents | 2006
|Neutron Diffraction from Novel Materials
British Library Online Contents | 1999
|British Library Online Contents | 2014
|Neutron Diffraction Studies of Magnetic Materials
British Library Online Contents | 1999
|Neutron diffraction studies on industrial materials
Tema Archive | 1990
|