A platform for research: civil engineering, architecture and urbanism
Dry Plaster Mixes Using Local Mineral Components
The objective of this paper is to investigate the effect produced by a set of modifying additives, including expanded clay dust ground down to a specific surface area of 300 m2/kg as that serves as a pozzolanic additive and high-molecular polyethylene oxide PEO-S with a molecular weight of 4 × 10 6 that performs the function of a water-retaining additive as part of the composition of dry plaster mixtures upon the indexes of the basic physical and mechanical properties of mortar mixes and solutions in order to identify the effectiveness of the application of this set of additives. The studies carried out have yielded the following results. The mathematical dependences which indicate the impact of the set of modifying additives in question upon the compressive strength and the bonding strength to the base of dry plaster mixture-based solutions have been established. It has been found that the set of modifying additives in question, when introduced in optimal quantities, results in a rise in compressive strength and bonding strength to the base of dry plaster mixture-based solutions. The effectiveness of introduction of a ground expanded clay dust additive shows that high pozzolan activity is due to its chemical interaction with portlandite Ca(OH)2 and other hydration products of Portland cement clinker minerals which yields newly formed phases that are engaged in structure formation and contribute to a rise in the strength of the solution. It has been established that high-molecular polyethylene oxide PEO-S is an effective and efficient water-retaining additive. The dependencies that were established have served as the basis for developing optimal compositions of dry plaster mixes which conform to regulatory requirements and are competitively viable as compared to other industrial counterparts owing to a reduction in the consumption of expensive Portland cement achieved through replacing a portion of it with ground expanded clay dust - industrial waste - and also thanks to the application of a water-retaining additive of locally produced high-molecular polyethylene oxide PEO-S instead of more expensive imported water-retaining additives.
Dry Plaster Mixes Using Local Mineral Components
The objective of this paper is to investigate the effect produced by a set of modifying additives, including expanded clay dust ground down to a specific surface area of 300 m2/kg as that serves as a pozzolanic additive and high-molecular polyethylene oxide PEO-S with a molecular weight of 4 × 10 6 that performs the function of a water-retaining additive as part of the composition of dry plaster mixtures upon the indexes of the basic physical and mechanical properties of mortar mixes and solutions in order to identify the effectiveness of the application of this set of additives. The studies carried out have yielded the following results. The mathematical dependences which indicate the impact of the set of modifying additives in question upon the compressive strength and the bonding strength to the base of dry plaster mixture-based solutions have been established. It has been found that the set of modifying additives in question, when introduced in optimal quantities, results in a rise in compressive strength and bonding strength to the base of dry plaster mixture-based solutions. The effectiveness of introduction of a ground expanded clay dust additive shows that high pozzolan activity is due to its chemical interaction with portlandite Ca(OH)2 and other hydration products of Portland cement clinker minerals which yields newly formed phases that are engaged in structure formation and contribute to a rise in the strength of the solution. It has been established that high-molecular polyethylene oxide PEO-S is an effective and efficient water-retaining additive. The dependencies that were established have served as the basis for developing optimal compositions of dry plaster mixes which conform to regulatory requirements and are competitively viable as compared to other industrial counterparts owing to a reduction in the consumption of expensive Portland cement achieved through replacing a portion of it with ground expanded clay dust - industrial waste - and also thanks to the application of a water-retaining additive of locally produced high-molecular polyethylene oxide PEO-S instead of more expensive imported water-retaining additives.
Dry Plaster Mixes Using Local Mineral Components
Lecture Notes in Civil Engineering
Vatin, Nikolai (editor) / Khaliullin, Marat (author) / Gilmanshina, Alsu (author)
International Scientific Conference on Socio-Technical Construction and Civil Engineering ; 2022 ; Kazan, Russia
2022-09-30
9 pages
Article/Chapter (Book)
Electronic Resource
English
Gypsum plaster-high alumina cement mixes as material for models of concrete structures
Engineering Index Backfile | 1967
|Causes of the drop in conductivity during the hydration of gypsum plaster mixes
British Library Online Contents | 1994
|