A platform for research: civil engineering, architecture and urbanism
Resistance to acid degradation, sorptivity, and setting time of geopolymer mortars
Experimental evaluations were conducted to determine the water sorptivity, setting time, and resistance to a highly acidic environment, of mortar with alkali-activated ground granulated blast furnace slag (GBS) binder and also of combinations of fly ash and GBS binders. Binders were activated using mixtures of NaOH and Na2SiO3 solutions. The molarity of NaOH in the mixtures ranged from 10 mol·L−1 to 16 mol·L−1, and the Na2SiO3/NaOH ratio was varied from 1.5 to 2.5. Mortar samples were produced using three binder combinations: 1) GBS as the only binder; 2) blended binder with a slag-to-fly ash ratio of 3:1; and 3) mixed binder with 1:1 ratio of slag to fly ash. Mortar samples were mixed and cured at (22 ± 2) °C till the day of the test. The impact of activator solution alkalinity, activator ratio Na2SiO3/NaOH, GBS content on the rate of water absorption were evaluated. After 7, 28, and 90 d of immersion in a 10% sulfuric acid solution, the resistance of a geopolymer matrix to degradation was assessed by measuring the change in sample weight. The influence of solution alkalinity and relative fly ash content on setting times was investigated. Alkali-activated mortar with a slag-to-fly ash ratio of 3:1 had the least sorptivity compared to the two other binder combinations, at each curing age, and for mortars made with each of the NaOH alkaline activator concentrations. Mortar sorptivity decreased with age and sodium hydroxide concentrations, suggesting the production of geopolymerization products. No reduction in weight of sample occurred after immersion in the strong acid H2SO4 solution for three months, regardless of binder combination. This was due to the synthesis of hydration and geopolymerization products in the presence of curing water, which outweighed the degradation of the geopolymer matrix caused by sulfuric acid.
Resistance to acid degradation, sorptivity, and setting time of geopolymer mortars
Experimental evaluations were conducted to determine the water sorptivity, setting time, and resistance to a highly acidic environment, of mortar with alkali-activated ground granulated blast furnace slag (GBS) binder and also of combinations of fly ash and GBS binders. Binders were activated using mixtures of NaOH and Na2SiO3 solutions. The molarity of NaOH in the mixtures ranged from 10 mol·L−1 to 16 mol·L−1, and the Na2SiO3/NaOH ratio was varied from 1.5 to 2.5. Mortar samples were produced using three binder combinations: 1) GBS as the only binder; 2) blended binder with a slag-to-fly ash ratio of 3:1; and 3) mixed binder with 1:1 ratio of slag to fly ash. Mortar samples were mixed and cured at (22 ± 2) °C till the day of the test. The impact of activator solution alkalinity, activator ratio Na2SiO3/NaOH, GBS content on the rate of water absorption were evaluated. After 7, 28, and 90 d of immersion in a 10% sulfuric acid solution, the resistance of a geopolymer matrix to degradation was assessed by measuring the change in sample weight. The influence of solution alkalinity and relative fly ash content on setting times was investigated. Alkali-activated mortar with a slag-to-fly ash ratio of 3:1 had the least sorptivity compared to the two other binder combinations, at each curing age, and for mortars made with each of the NaOH alkaline activator concentrations. Mortar sorptivity decreased with age and sodium hydroxide concentrations, suggesting the production of geopolymerization products. No reduction in weight of sample occurred after immersion in the strong acid H2SO4 solution for three months, regardless of binder combination. This was due to the synthesis of hydration and geopolymerization products in the presence of curing water, which outweighed the degradation of the geopolymer matrix caused by sulfuric acid.
Resistance to acid degradation, sorptivity, and setting time of geopolymer mortars
Front. Struct. Civ. Eng.
Mohamed, Osama A. (author) / Al-Khattab, Rania (author) / Al-Hawat, Waddah (author)
Frontiers of Structural and Civil Engineering ; 16 ; 781-791
2022-06-01
11 pages
Article (Journal)
Electronic Resource
English
Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica
Online Contents | 2016
|Sorptivity Characteristics of High Performance Mortars
British Library Online Contents | 2002
|Sorptivity and constitution of mature cementitious mortars
British Library Online Contents | 1993
|Strength, sorptivity and carbonation of geopolymer concrete
British Library Conference Proceedings | 2010
|SP-228-93: Sorptivity Characteristics of High-Performance Mortars
British Library Conference Proceedings | 2005
|