A platform for research: civil engineering, architecture and urbanism
EBW titanium sheets as material for drawn parts
The growing demand for high strength, lightweight and corrosion-resistant drawn parts has created increasing interest in the use of titanium and its alloys. Additional benefits may result from the use of tailor-welded blanks, allowing for significant savings in material, and the possibility of applying higher strength sheets exactly where needed. When forming welded blanks, it is necessary to overcome many technological barriers which are not reflected in technical literature. Therefore, some prior experience in numerical simulations is needed before embarking on further studies of welded blanks formability. For this purpose, it is necessary to determine the mechanical parameters of the base materials, as well as the fusion and heat-affected zones.
The paper is devoted to the analysis of an electron beam welded joint made of commercially pure titanium Grade 2 and titanium alloy Grade 5. Light microscopy was used for examination of the joint microstructure and determination of the size of the specific joint zones. The mechanical parameters of the base materials were specified in a tensile test, while the material properties of the fusion and heat-affected zones were estimated on the basis of the relationship between the material hardness and strength assuming that the yield stress is directly proportional to the material hardness. To do this, a scratch test and microhardness measurements (using small load) were carried out. The obtained results allow for improvement to the numerical model of sheet-metal forming welded blanks and consequently, it will allow for better agreement between the numerical and empirical results.
EBW titanium sheets as material for drawn parts
The growing demand for high strength, lightweight and corrosion-resistant drawn parts has created increasing interest in the use of titanium and its alloys. Additional benefits may result from the use of tailor-welded blanks, allowing for significant savings in material, and the possibility of applying higher strength sheets exactly where needed. When forming welded blanks, it is necessary to overcome many technological barriers which are not reflected in technical literature. Therefore, some prior experience in numerical simulations is needed before embarking on further studies of welded blanks formability. For this purpose, it is necessary to determine the mechanical parameters of the base materials, as well as the fusion and heat-affected zones.
The paper is devoted to the analysis of an electron beam welded joint made of commercially pure titanium Grade 2 and titanium alloy Grade 5. Light microscopy was used for examination of the joint microstructure and determination of the size of the specific joint zones. The mechanical parameters of the base materials were specified in a tensile test, while the material properties of the fusion and heat-affected zones were estimated on the basis of the relationship between the material hardness and strength assuming that the yield stress is directly proportional to the material hardness. To do this, a scratch test and microhardness measurements (using small load) were carried out. The obtained results allow for improvement to the numerical model of sheet-metal forming welded blanks and consequently, it will allow for better agreement between the numerical and empirical results.
EBW titanium sheets as material for drawn parts
Archiv.Civ.Mech.Eng
Adamus, J. (author) / Lacki, P. (author) / Motyka, M. (author)
Archives of Civil and Mechanical Engineering ; 15 ; 42-47
2015-03-01
6 pages
Article (Journal)
Electronic Resource
English
Fracture criteria of deep-drawn steel sheets
British Library Online Contents | 1995
|British Library Online Contents | 2009
|Wrinkling behaviour of interstitial free steel sheets when drawn through tapered dies
British Library Online Contents | 2007
|Mechanical properties of cold-drawn and cast Grade 2 Titanium
British Library Online Contents | 1998
|Plastic Deformation Of Titanium Alloys Sheets
British Library Conference Proceedings | 2010
|