A platform for research: civil engineering, architecture and urbanism
Mercury source zone identification using soil vapor sampling and analysis
Abstract Development and demonstration of reliable measurement techniques that can detect and help quantify the nature and extent of elemental mercury (Hg(0)) in the subsurface are needed to reduce uncertainties in the decision-making process and increase the effectiveness of remedial actions. We conducted field tests at the Y-12 National Security Complex in Oak Ridge, Tennessee, USA, to determine if sampling and analysis of Hg(0) vapors in the shallow subsurface (< 0.3 m depth) can be used to as an indicator of the location and extent of Hg(0) releases in the subsurface. We constructed a rigid polyvinyl chloride push probe assembly, which was driven into the ground. Soil gas samples were collected through a sealed inner tube of the assembly and were analyzed immediately in the field with a Lumex and/or Jerome Hg(0) analyzer. Time-series sampling showed that Hg vapor concentrations were fairly stable over time, suggesting that the vapor phase Hg(0) was not being depleted and that sampling results were not sensitive to the soil gas purge volume. Hg(0) vapor data collected at over 200 push probe locations at 3 different release sites correlated very well to areas of known Hg(0) contamination. Vertical profiling of Hg(0) vapor concentrations conducted at two locations provided information on the vertical distribution of Hg(0) contamination in the subsurface. We conclude from our studies that soil gas sampling and analysis can be conducted rapidly and inexpensively at large scales to help identify areas contaminated with Hg(0).
Mercury source zone identification using soil vapor sampling and analysis
Abstract Development and demonstration of reliable measurement techniques that can detect and help quantify the nature and extent of elemental mercury (Hg(0)) in the subsurface are needed to reduce uncertainties in the decision-making process and increase the effectiveness of remedial actions. We conducted field tests at the Y-12 National Security Complex in Oak Ridge, Tennessee, USA, to determine if sampling and analysis of Hg(0) vapors in the shallow subsurface (< 0.3 m depth) can be used to as an indicator of the location and extent of Hg(0) releases in the subsurface. We constructed a rigid polyvinyl chloride push probe assembly, which was driven into the ground. Soil gas samples were collected through a sealed inner tube of the assembly and were analyzed immediately in the field with a Lumex and/or Jerome Hg(0) analyzer. Time-series sampling showed that Hg vapor concentrations were fairly stable over time, suggesting that the vapor phase Hg(0) was not being depleted and that sampling results were not sensitive to the soil gas purge volume. Hg(0) vapor data collected at over 200 push probe locations at 3 different release sites correlated very well to areas of known Hg(0) contamination. Vertical profiling of Hg(0) vapor concentrations conducted at two locations provided information on the vertical distribution of Hg(0) contamination in the subsurface. We conclude from our studies that soil gas sampling and analysis can be conducted rapidly and inexpensively at large scales to help identify areas contaminated with Hg(0).
Mercury source zone identification using soil vapor sampling and analysis
Watson, David (author) / Miller, Carrie (author) / Lester, Brian (author) / Lowe, Kenneth (author) / Southworth, George (author) / Bogle, Mary Anna (author) / Liang, Liyuan (author) / Pierce, Eric (author)
Frontiers of Environmental Science & Engineering ; 9 ; 596-604
2014-05-09
9 pages
Article (Journal)
Electronic Resource
English
Using in-situ soil vapor extraction to remediate vadose zone soil contamination
British Library Conference Proceedings | 1992
|Engineering Index Backfile | 1921
|Engineering Index Backfile | 1907
|Sampling and Analysis for Mercury at Low Concentrations
British Library Conference Proceedings | 1998
|Mercury vapor for tunnel lighting
Engineering Index Backfile | 1952
|