A platform for research: civil engineering, architecture and urbanism
Coefficient of Flow Rate of Inlet Cylindrical Nozzles with Lateral Orthogonal Inflow
Abstract Cylindrical nozzles each of which has a lateral orthogonal inlet of fluid into it we recommend to apply in pressure distributive pipelines. By means of rotating these nozzles about their longitudinal axes, we can change the values of the angles $$ \beta $$ between the direction of the flow of fluid inside the distribution pipeline and the direction of the inflowing into the nozzle stream. The coefficient μ of flow rate through the nozzle with lateral orthogonal inlet is a function of the angle β. By means of changing the angles β, we regulate the non-uniformity of fluid dispensation from the pipeline along the path. It is experimentally established that the values of the coefficient μ for such nozzles depend on the angle β, on the squared ratio $$ (d/D)^{2} $$ of the cross-section area of the nozzle d to the cross-section area of the distributive pipeline D, as well as on Reynolds’ criterion Re which is calculated for the water stream in the nozzle. As operating fluid, we used water. The angles β were assigned the following values: 0, 45, 90, 135, and 180°. In the experiments, we used the distributive pipelines whose diameters D were equal to 11.28; 16.13; 20.18; 26.01 mm. The diameters d of the nozzles were 4.83; 6.01; 8.02; 8.99 mm. ratios (d/D)2 of cross-section areas were 0.0887; 0.119; 0.158; 0.183; 0.251. The greatest values of the coefficient μ of flow rate of the nozzles were obtained for β = 0°; the least for β = 90°. The greatest range of regulation of flow capacity (throughput) of nozzles has been obtained for (d/D)2 = 0.251; the values of μ variated by 23%.
Coefficient of Flow Rate of Inlet Cylindrical Nozzles with Lateral Orthogonal Inflow
Abstract Cylindrical nozzles each of which has a lateral orthogonal inlet of fluid into it we recommend to apply in pressure distributive pipelines. By means of rotating these nozzles about their longitudinal axes, we can change the values of the angles $$ \beta $$ between the direction of the flow of fluid inside the distribution pipeline and the direction of the inflowing into the nozzle stream. The coefficient μ of flow rate through the nozzle with lateral orthogonal inlet is a function of the angle β. By means of changing the angles β, we regulate the non-uniformity of fluid dispensation from the pipeline along the path. It is experimentally established that the values of the coefficient μ for such nozzles depend on the angle β, on the squared ratio $$ (d/D)^{2} $$ of the cross-section area of the nozzle d to the cross-section area of the distributive pipeline D, as well as on Reynolds’ criterion Re which is calculated for the water stream in the nozzle. As operating fluid, we used water. The angles β were assigned the following values: 0, 45, 90, 135, and 180°. In the experiments, we used the distributive pipelines whose diameters D were equal to 11.28; 16.13; 20.18; 26.01 mm. The diameters d of the nozzles were 4.83; 6.01; 8.02; 8.99 mm. ratios (d/D)2 of cross-section areas were 0.0887; 0.119; 0.158; 0.183; 0.251. The greatest values of the coefficient μ of flow rate of the nozzles were obtained for β = 0°; the least for β = 90°. The greatest range of regulation of flow capacity (throughput) of nozzles has been obtained for (d/D)2 = 0.251; the values of μ variated by 23%.
Coefficient of Flow Rate of Inlet Cylindrical Nozzles with Lateral Orthogonal Inflow
Cherniuk, V. V. (author) / Ivaniv, V. V. (author) / Bihun, I. V. (author) / Wojtowicz, Ja. M. (author)
2019-08-09
8 pages
Article/Chapter (Book)
Electronic Resource
English
Method for improving inlet flow pattern of porous inflow pump station
European Patent Office | 2021
|METHOD FOR IMPROVING INLET FLOW PATTERN OF MULTIHOLE INFLOW PUMP STATION
European Patent Office | 2020
|Lateral Inflow into High-Velocity Channels
NTIS | 2007
|Computation of Flow Transitions in Open Channels with Steady Uniform Lateral Inflow
British Library Online Contents | 1993
|