A platform for research: civil engineering, architecture and urbanism
Field Measurement and Analysis of Ground Vibration Induced by High-Speed Train
Abstract In situ test data for ground vibration of high-speed railways is valuable but scarce. Chinese researchers used to cite test results from European countries to verify their numerical model, owing to the lack of open access to in situ data. To remedy this shortage, this paper presents field measurements of ground vibrations induced by high-speed trains at a site on the Qin-Shen Line in China. The free field vibrations at different distances from the track center during the passage of a high-speed train at a speed varying from 230 to 250 km/h are measured. The recorded vertical accelerations are analyzed both in the time and the frequency domains. The periodic exciting action of the train wheel-set can be identified in the vertical acceleration time-history when the test site is close to (e.g. 3.5 m away from) the track centerline. Vertical acceleration generally attenuates with distance from the track centerline, but a vibration boom occurs at the distance of 12 m. The effect of both P and S waves cannot be neglected in the vicinity of the track, while R waves begin to dominant beyond the distance of 15 m. In addition, an important frequency in the acceleration spectrum of the ground vibration is the fundamental axle passage frequency (25.6–27.8 Hz). The test results could be available to peer researchers for verification of their numerical models, and meanwhile act as a complementary material to currently scarce in situ tests results.
Field Measurement and Analysis of Ground Vibration Induced by High-Speed Train
Abstract In situ test data for ground vibration of high-speed railways is valuable but scarce. Chinese researchers used to cite test results from European countries to verify their numerical model, owing to the lack of open access to in situ data. To remedy this shortage, this paper presents field measurements of ground vibrations induced by high-speed trains at a site on the Qin-Shen Line in China. The free field vibrations at different distances from the track center during the passage of a high-speed train at a speed varying from 230 to 250 km/h are measured. The recorded vertical accelerations are analyzed both in the time and the frequency domains. The periodic exciting action of the train wheel-set can be identified in the vertical acceleration time-history when the test site is close to (e.g. 3.5 m away from) the track centerline. Vertical acceleration generally attenuates with distance from the track centerline, but a vibration boom occurs at the distance of 12 m. The effect of both P and S waves cannot be neglected in the vicinity of the track, while R waves begin to dominant beyond the distance of 15 m. In addition, an important frequency in the acceleration spectrum of the ground vibration is the fundamental axle passage frequency (25.6–27.8 Hz). The test results could be available to peer researchers for verification of their numerical models, and meanwhile act as a complementary material to currently scarce in situ tests results.
Field Measurement and Analysis of Ground Vibration Induced by High-Speed Train
Gao, Guangyun (author) / Chen, Juan (author) / Song, Jian (author) / Yang, Jun (author) / Yao, Shaofeng (author)
2017-06-28
14 pages
Article/Chapter (Book)
Electronic Resource
English
High-speed train , Ground vibration , Field measurement , Fundamental axle passage frequency , Moving train load Engineering , Geoengineering, Foundations, Hydraulics , Geotechnical Engineering & Applied Earth Sciences , Vibration, Dynamical Systems, Control , Monitoring/Environmental Analysis , Building Repair and Maintenance , Transportation Technology and Traffic Engineering
Prediction of high-speed train induced ground vibration based on train-track-ground system model
Online Contents | 2010
|Numerical Analysis of Ground Vibration Induced by High-Speed Train on Viaduct
Trans Tech Publications | 2011
|Ground vibration analysis under combined seismic and high-speed train loads
DOAJ | 2022
|Discussion about Train-Induced Ground Vibration
Tema Archive | 2012
|