A platform for research: civil engineering, architecture and urbanism
Numerical Damage Modelling of Macro-synthetic Fibre Reinforced Concrete
Macro-synthetic fibre reinforcement for concrete applications is gaining popularity in the construction industry owing to its’ advanced development towards higher mechanical properties, electrical and corrosion resistance. However, the main drawback of the effective application of macro-synthetic fibre reinforced concrete (MSFRC) is the limited analysis procedures adopted from the existing concrete behavioural models and guidelines. Indeed, the behaviour of MSFRC is mainly characterised by the post-cracking hardening/softening, which significantly differs from the brittle nature of plain concrete.
Currently, material models which are available for the numerical modelling of steel fibre reinforced concrete (SFRC) characterises the hardening and softening behaviour immediately after the limit of proportionality. In regards with MSFRC modelling, the initial frictional slippage of fibres causes an instantaneous reduction in the tensile stress (i.e. post-cracking phase), wherein which the damage evolution requires a distinctive approach. Therefore, the paper herein focuses on reviewing the adoptability of current models and evaluate the sensitivity of damage parameters in macro-scale analysis. As a result, this paper provides significant insights into the different parameters and calibrations required towards the recognition of the MSFRC material model in the finite element analysis.
Numerical Damage Modelling of Macro-synthetic Fibre Reinforced Concrete
Macro-synthetic fibre reinforcement for concrete applications is gaining popularity in the construction industry owing to its’ advanced development towards higher mechanical properties, electrical and corrosion resistance. However, the main drawback of the effective application of macro-synthetic fibre reinforced concrete (MSFRC) is the limited analysis procedures adopted from the existing concrete behavioural models and guidelines. Indeed, the behaviour of MSFRC is mainly characterised by the post-cracking hardening/softening, which significantly differs from the brittle nature of plain concrete.
Currently, material models which are available for the numerical modelling of steel fibre reinforced concrete (SFRC) characterises the hardening and softening behaviour immediately after the limit of proportionality. In regards with MSFRC modelling, the initial frictional slippage of fibres causes an instantaneous reduction in the tensile stress (i.e. post-cracking phase), wherein which the damage evolution requires a distinctive approach. Therefore, the paper herein focuses on reviewing the adoptability of current models and evaluate the sensitivity of damage parameters in macro-scale analysis. As a result, this paper provides significant insights into the different parameters and calibrations required towards the recognition of the MSFRC material model in the finite element analysis.
Numerical Damage Modelling of Macro-synthetic Fibre Reinforced Concrete
RILEM Bookseries
Serna, Pedro (editor) / Llano-Torre, Aitor (editor) / Martí-Vargas, José R. (editor) / Navarro-Gregori, Juan (editor) / Hewage, Dayani Kahagala (author) / Camille, Christophe (author) / Mirza, Olivia (author) / Mashiri, Fidelis (author) / Kirkland, Brendan (author) / Clarke, Todd (author)
RILEM-fib International Symposium on Fibre Reinforced Concrete ; 2020 ; Valencia, Spain
Fibre Reinforced Concrete: Improvements and Innovations ; Chapter: 50 ; 548-557
RILEM Bookseries ; 30
2020-11-05
10 pages
Article/Chapter (Book)
Electronic Resource
English
Material characterisation of macro synthetic fibre reinforced concrete
Elsevier | 2017
|Design of macro-synthetic fibre reinforced concrete pipes
British Library Online Contents | 2013
|Design of macro-synthetic fibre reinforced concrete pipes
Online Contents | 2013
|Design of macro-synthetic fibre reinforced concrete pipes
Elsevier | 2013
|