A platform for research: civil engineering, architecture and urbanism
Effect of short-term atrazine addition on the performance of an anaerobic/anoxic/oxic process
Abstract In this study, an anaerobic/anoxic/oxic (A2O) wastewater treatment process was implemented to treat domestic wastewater with short-term atrazine addition. The results provided an evaluation on the effects of an accidental pollution on the operation of a wastewater treatment plant (WWTP) in relation to Chemical Oxygen Demand (COD) and biological nutrient removal. Domestic wastewater with atrazine addition in 3 continuous days was treated when steady biological nutrient removal was achieved in the A2O process. The concentrations of atrazine were 15, 10, and 5 mg·L−1 on days 1, 2 and 3, respectively. The results showed that atrazine addition did not affect the removal of COD. The specific NH4 + oxidation rate and NO3 − reduction rate decreased slightly due to the short-term atrazine addition. However, it did not affect the nitrogen removal due to the high nitrification and denitrification capacity of the system. Total nitrogen (TN) removal was steady, and more than 70% was removed during the period studied. The phosphorus removal rate was not affected by the short-term addition of atrazine under the applied experimental conditions. However, more poly-hydroxy-alkanoate (PHA) was generated and utilized during atrazine addition. The results of the oxygen uptake rate (OUR) showed that the respiration of nitrifiers decreased significantly, while the activity of carbon utilizers had no obvious change with the atrazine addition. Atrazine was not removed with the A2O process, even via absorption by the activated sludge in the process of the short-term addition of atrazine.
Effect of short-term atrazine addition on the performance of an anaerobic/anoxic/oxic process
Abstract In this study, an anaerobic/anoxic/oxic (A2O) wastewater treatment process was implemented to treat domestic wastewater with short-term atrazine addition. The results provided an evaluation on the effects of an accidental pollution on the operation of a wastewater treatment plant (WWTP) in relation to Chemical Oxygen Demand (COD) and biological nutrient removal. Domestic wastewater with atrazine addition in 3 continuous days was treated when steady biological nutrient removal was achieved in the A2O process. The concentrations of atrazine were 15, 10, and 5 mg·L−1 on days 1, 2 and 3, respectively. The results showed that atrazine addition did not affect the removal of COD. The specific NH4 + oxidation rate and NO3 − reduction rate decreased slightly due to the short-term atrazine addition. However, it did not affect the nitrogen removal due to the high nitrification and denitrification capacity of the system. Total nitrogen (TN) removal was steady, and more than 70% was removed during the period studied. The phosphorus removal rate was not affected by the short-term addition of atrazine under the applied experimental conditions. However, more poly-hydroxy-alkanoate (PHA) was generated and utilized during atrazine addition. The results of the oxygen uptake rate (OUR) showed that the respiration of nitrifiers decreased significantly, while the activity of carbon utilizers had no obvious change with the atrazine addition. Atrazine was not removed with the A2O process, even via absorption by the activated sludge in the process of the short-term addition of atrazine.
Effect of short-term atrazine addition on the performance of an anaerobic/anoxic/oxic process
Wu, Changyong (author) / Peng, Yongzhen (author) / Li, Xiaoling (author) / Chen, Zhiqiang (author)
2010-04-13
7 pages
Article (Journal)
Electronic Resource
English
Characteristics of nitrification and denitrification of the media-anaerobic-anoxic-oxic process
British Library Conference Proceedings | 1996
|Characteristics of nitrification and denitrification of the media-anaerobic-anoxic-oxic process
British Library Conference Proceedings | 1996
|British Library Conference Proceedings | 2012
|Degradation behavior of dimethyl phthalate in an anaerobic/anoxic/oxic system
Online Contents | 2016
|British Library Online Contents | 2010
|