A platform for research: civil engineering, architecture and urbanism
Properties of Belite-Rich Cement with Supplementary Cementitious Materials
The article deals with the role of supplementary cementitious materials (SCMs) on the properties of laboratory belite-rich cements prepared from low-energy clinker doped with SO3. The low lime saturation factor (LSF) clinker with belite as the main phase was synthesized at 1350 °C using industrial raw materials. Alite/belite ratio is opposite to that of ordinary Portland cement (OPC). ß-C2S and M1 alite are the main modifications in doped clinkers. Cements were prepared by grinding clinkers to 400 m2/kg fineness in a laboratory ball mill. Replacement of 10, 20 and 30 wt.% of calcined clay, ground limestone, blast-furnace slag, ground glass and 5, 10 and 15 wt.% of silica fume were tested. Along with clinker properties, early properties of cement pastes and mortars were studied by isothermal calorimetry. Strength development of mortars were monitored after 2, 7, 28 and 90 days. Heat flow development during early hydration is strongly affected by SCMs, as seen in the position and intensities of aluminate, silicate, second aluminate and ettringite to monosulfate (AFt-AFm) conversion peaks. Despite low alite content, the cements have decent early and good long-term strengths, even at higher replacement levels. Binary combinations of OPC with calcined clay, blast-furnace slag or ground grass gave the best results. The introduction of such cements would significantly decrease the CO2 emissions and energy demand and partly save the primary sources of limestone.
Properties of Belite-Rich Cement with Supplementary Cementitious Materials
The article deals with the role of supplementary cementitious materials (SCMs) on the properties of laboratory belite-rich cements prepared from low-energy clinker doped with SO3. The low lime saturation factor (LSF) clinker with belite as the main phase was synthesized at 1350 °C using industrial raw materials. Alite/belite ratio is opposite to that of ordinary Portland cement (OPC). ß-C2S and M1 alite are the main modifications in doped clinkers. Cements were prepared by grinding clinkers to 400 m2/kg fineness in a laboratory ball mill. Replacement of 10, 20 and 30 wt.% of calcined clay, ground limestone, blast-furnace slag, ground glass and 5, 10 and 15 wt.% of silica fume were tested. Along with clinker properties, early properties of cement pastes and mortars were studied by isothermal calorimetry. Strength development of mortars were monitored after 2, 7, 28 and 90 days. Heat flow development during early hydration is strongly affected by SCMs, as seen in the position and intensities of aluminate, silicate, second aluminate and ettringite to monosulfate (AFt-AFm) conversion peaks. Despite low alite content, the cements have decent early and good long-term strengths, even at higher replacement levels. Binary combinations of OPC with calcined clay, blast-furnace slag or ground grass gave the best results. The introduction of such cements would significantly decrease the CO2 emissions and energy demand and partly save the primary sources of limestone.
Properties of Belite-Rich Cement with Supplementary Cementitious Materials
RILEM Bookseries
Jędrzejewska, Agnieszka (editor) / Kanavaris, Fragkoulis (editor) / Azenha, Miguel (editor) / Benboudjema, Farid (editor) / Schlicke, Dirk (editor) / Boháč, Martin (author) / Kubátová, Dana (author) / Zezulová, Anežka (author) / Staněk, Theodor (author)
International RILEM Conference on Synergising expertise towards sustainability and robustness of CBMs and concrete structures ; 2023 ; Milos Island, Greece
2023-06-09
11 pages
Article/Chapter (Book)
Electronic Resource
English
Active sulfate-rich belite sulfoaluminate cement
Online Contents | 2017
|Active sulfate-rich belite sulfoaluminate cement
Online Contents | 2017
|Some Properties of Concrete Using Belite-Rich Cement
British Library Conference Proceedings | 1993
|Polymer-modified cement using belite-rich cement and carbonation reaction
British Library Online Contents | 2016
|