A platform for research: civil engineering, architecture and urbanism
Load and Deformation Mechanisms in Geosynthetic-Reinforced Piled Embankments
Abstract Geosynthetic-reinforced piled embankments have been increasingly used to stabilise embankments over soft soils. The presence of the reinforcement reduces the stresses transferred to the soft foundation and improves the efficiency of the transference of loads to the piles. Therefore, significant reductions in fill settlements and in lateral displacements of the soft soil can be obtained. However, the design of this type of work is still complex and simple theoretical approaches are commonly employed in practice. This paper investigates the load transference and deformation mechanisms in reinforced piled embankments by means of large-scale laboratory tests. Four types of geosynthetics, including a geogrid and three geotextiles, were tested with varying values of tensile stiffness. Surcharges on the fill surface of up to 40 kPa (200 kPa under prototype conditions) were applied. Test measurements were compared with predictions from some currently employed analytical methods. The results obtained showed the benefits of using geosynthetic reinforcement in this type of work and that significant variations among predictions by analytical methods and measurements may occur. It is recommended that sound engineering judgement be exercised when using analytical solutions in the design of geosynthetic-reinforced piled embankments on soft subgrades.
Load and Deformation Mechanisms in Geosynthetic-Reinforced Piled Embankments
Abstract Geosynthetic-reinforced piled embankments have been increasingly used to stabilise embankments over soft soils. The presence of the reinforcement reduces the stresses transferred to the soft foundation and improves the efficiency of the transference of loads to the piles. Therefore, significant reductions in fill settlements and in lateral displacements of the soft soil can be obtained. However, the design of this type of work is still complex and simple theoretical approaches are commonly employed in practice. This paper investigates the load transference and deformation mechanisms in reinforced piled embankments by means of large-scale laboratory tests. Four types of geosynthetics, including a geogrid and three geotextiles, were tested with varying values of tensile stiffness. Surcharges on the fill surface of up to 40 kPa (200 kPa under prototype conditions) were applied. Test measurements were compared with predictions from some currently employed analytical methods. The results obtained showed the benefits of using geosynthetic reinforcement in this type of work and that significant variations among predictions by analytical methods and measurements may occur. It is recommended that sound engineering judgement be exercised when using analytical solutions in the design of geosynthetic-reinforced piled embankments on soft subgrades.
Load and Deformation Mechanisms in Geosynthetic-Reinforced Piled Embankments
Fonseca, Ewerton C. A. (author) / Palmeira, Ennio M. (author) / Barrantes, Michael V. (author)
2018-10-26
12 pages
Article (Journal)
Electronic Resource
English
Investigation of Arching Effect in Geosynthetic-Reinforced Piled Embankments
Springer Verlag | 2018
|Geosynthetic-Reinforced Piled Embankments: Comparison of Numerical and Analytical Methods
Online Contents | 2015
|