A platform for research: civil engineering, architecture and urbanism
The detailed particle breakage around the pile in coral sand
Detailed particle breakage adjacent to a pile has great influence on the settlement and bearing capacity of a pile foundation. Before the pile test, coral sand was divided into different grain-size groups and dyed in different colors, then mixed as the ground soil. After pile penetration, the sand around the pile was divided into many zones and sampled. Grains in different colors in each size range of each sample were discerned quantitatively. Results show that the settlement curve dropped fast and the skin friction of pile was small due to the obvious particle breakage. In each zone, the actual particle breakage in each size range was different from the change in relative mass percentage, and the lost of angular edges is the dominant type of particle breakage under the bottom pressure of pile. The index Bag, excluding the interference effect of size overlap between fragments and unbroken grains in each size range, was slightly larger than Bg for most zones around the pile. The breakage-zone was limited to 1.5 times of the pile diameter at the radial direction and 2.5 times at the depth direction, which is much deeper than that in silica sand. Particle breakage at some distance from pile bottom is larger than that at the very bottom of the pile due to the shearing effect in the sand. Detailed particle breakage around the pile is useful in studying the interaction between the pile and crushable granular soil.
The detailed particle breakage around the pile in coral sand
Detailed particle breakage adjacent to a pile has great influence on the settlement and bearing capacity of a pile foundation. Before the pile test, coral sand was divided into different grain-size groups and dyed in different colors, then mixed as the ground soil. After pile penetration, the sand around the pile was divided into many zones and sampled. Grains in different colors in each size range of each sample were discerned quantitatively. Results show that the settlement curve dropped fast and the skin friction of pile was small due to the obvious particle breakage. In each zone, the actual particle breakage in each size range was different from the change in relative mass percentage, and the lost of angular edges is the dominant type of particle breakage under the bottom pressure of pile. The index Bag, excluding the interference effect of size overlap between fragments and unbroken grains in each size range, was slightly larger than Bg for most zones around the pile. The breakage-zone was limited to 1.5 times of the pile diameter at the radial direction and 2.5 times at the depth direction, which is much deeper than that in silica sand. Particle breakage at some distance from pile bottom is larger than that at the very bottom of the pile due to the shearing effect in the sand. Detailed particle breakage around the pile is useful in studying the interaction between the pile and crushable granular soil.
The detailed particle breakage around the pile in coral sand
Acta Geotech.
Peng, Yu (author) / Liu, Hanlong (author) / Li, Chi (author) / Ding, Xuanming (author) / Deng, Xin (author) / Wang, Chunyan (author)
Acta Geotechnica ; 16 ; 1971-1981
2021-06-01
11 pages
Article (Journal)
Electronic Resource
English
Breakage index , Breakage-zone , Detailed particle breakage , Fragments , Pile penetration Engineering , Geoengineering, Foundations, Hydraulics , Solid Mechanics , Geotechnical Engineering & Applied Earth Sciences , Soil Science & Conservation , Soft and Granular Matter, Complex Fluids and Microfluidics
The detailed particle breakage around the pile in coral sand
Springer Verlag | 2021
|Particle breakage in triaxial shear of a coral sand
British Library Online Contents | 2018
|Particle breakage in triaxial shear of a coral sand
British Library Online Contents | 2018
|Particle breakage in triaxial shear of a coral sand
British Library Online Contents | 2018
|