A platform for research: civil engineering, architecture and urbanism
Influence of adhesive on dynamic performance of steel/Al electromagnetic clinched joints
In this paper, the dynamic behavior of clinched, bonded and clinch-bonded joints for steel/Al was investigated. Three tensile speeds (1 m/s, 5 m/s, and 10 m/s) were selected. The strain evolution of three kinds of joints was analyzed by the digital image correlation (DIC) technique. The mechanical properties and failure mechanism of joints were obtained. The result showed that the shear strength and energy absorption of joints were both increased as the tensile speed increased. When the tensile speed increased from 1 to 10 m/s, the peak loads of clinched joints, bonded joints and clinch-bonded joints were increased by 26.7%, 17.5% and 16.3%, respectively. The energy absorption of three kinds of joints were increased by 35.4%, 27.3%, and 29.0%, respectively. Besides, the addition of adhesive effectively improved the shear strength and energy absorption of the joint compared to clinched joints. Specifically, the peak load and energy absorption were increased by nearly three times and thirteen times, respectively. The failure modes of clinched joint ranged from mixed failure to neck failure. While the failure modes of bonded joint were mixed failure at different tensile speeds. For clinch-bonded joint, the failure modes of interlock structure were the neck failure and the failure modes of adhesive layer were mixed failure. With the increase of the tensile speed, the cohesive failure area of bonded joint and clinch-bonded joint decreased, and the damage degree of mechanical interlock was more serious for clinched joint.
Influence of adhesive on dynamic performance of steel/Al electromagnetic clinched joints
In this paper, the dynamic behavior of clinched, bonded and clinch-bonded joints for steel/Al was investigated. Three tensile speeds (1 m/s, 5 m/s, and 10 m/s) were selected. The strain evolution of three kinds of joints was analyzed by the digital image correlation (DIC) technique. The mechanical properties and failure mechanism of joints were obtained. The result showed that the shear strength and energy absorption of joints were both increased as the tensile speed increased. When the tensile speed increased from 1 to 10 m/s, the peak loads of clinched joints, bonded joints and clinch-bonded joints were increased by 26.7%, 17.5% and 16.3%, respectively. The energy absorption of three kinds of joints were increased by 35.4%, 27.3%, and 29.0%, respectively. Besides, the addition of adhesive effectively improved the shear strength and energy absorption of the joint compared to clinched joints. Specifically, the peak load and energy absorption were increased by nearly three times and thirteen times, respectively. The failure modes of clinched joint ranged from mixed failure to neck failure. While the failure modes of bonded joint were mixed failure at different tensile speeds. For clinch-bonded joint, the failure modes of interlock structure were the neck failure and the failure modes of adhesive layer were mixed failure. With the increase of the tensile speed, the cohesive failure area of bonded joint and clinch-bonded joint decreased, and the damage degree of mechanical interlock was more serious for clinched joint.
Influence of adhesive on dynamic performance of steel/Al electromagnetic clinched joints
Archiv.Civ.Mech.Eng
Liao, Yuxuan (author) / Zhong, Jiabao (author) / Li, Guangyao (author) / Cui, Junjia (author) / Jiang, Hao (author)
2022-08-06
Article (Journal)
Electronic Resource
English
Influence of adhesive on dynamic performance of steel/Al electromagnetic clinched joints
Springer Verlag | 2022
|Residual Stress Distributions around Clinched Joints
British Library Online Contents | 2002
|Fatigue behaviour of tensile-shear loaded clinched joints
British Library Online Contents | 2006
|Investigations of strength and energy absorption of clinched joints
British Library Online Contents | 2014
|An experimental study on clinched joints realized with different dies
Online Contents | 2014
|