A platform for research: civil engineering, architecture and urbanism
Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor
Abstract The nitrogen removal mechanism was studied and analyzed when treating the ammonium-rich landfill leachate by a set of sequencing batch biofilm reactors (SBBRs), which was designed independently. At the liquid temperature of (32 ± 0.4)°C, and after a 58-days domestication period and a 33-days stabilization period, the efficiency of ammonium removal in the SBBR went up to 95%. Highly frequent intermittent aeration suppressed the activity of nitratebacteria, and also eliminated the influence on the activity of anaerobic ammonium oxidation (ANAMMOX) bacteria and nitritebacteria. This influence was caused by the accumulation of nitrous acid and the undulation of pH. During the aeration stage, the concentration of dissolved oxygen was controlled at 1.2–1.4 mg/L. The nitritebacteria became dominant and nitrite accumulated gradually. During the anoxic stage, along with the concentration debasement of the dissolved oxygen, ANAMMOX bacteria became dominant; then, the nitrite that was accumulated in the aeration stage was wiped off with ammonium simultaneously.
Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor
Abstract The nitrogen removal mechanism was studied and analyzed when treating the ammonium-rich landfill leachate by a set of sequencing batch biofilm reactors (SBBRs), which was designed independently. At the liquid temperature of (32 ± 0.4)°C, and after a 58-days domestication period and a 33-days stabilization period, the efficiency of ammonium removal in the SBBR went up to 95%. Highly frequent intermittent aeration suppressed the activity of nitratebacteria, and also eliminated the influence on the activity of anaerobic ammonium oxidation (ANAMMOX) bacteria and nitritebacteria. This influence was caused by the accumulation of nitrous acid and the undulation of pH. During the aeration stage, the concentration of dissolved oxygen was controlled at 1.2–1.4 mg/L. The nitritebacteria became dominant and nitrite accumulated gradually. During the anoxic stage, along with the concentration debasement of the dissolved oxygen, ANAMMOX bacteria became dominant; then, the nitrite that was accumulated in the aeration stage was wiped off with ammonium simultaneously.
Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor
Xu, Zhengyong (author) / Zhaohui, Yang (author) / Guangming, Zeng (author) / Yong, Xiao (author) / Jiuhua, Deng (author)
2007-02-01
6 pages
Article (Journal)
Electronic Resource
English
Nitrogen removal optimization in a sequencing batch reactor treating sanitary landfill leachate
Online Contents | 2007
|Biological phosphate and nitrogen removal in a biofilm sequencing batch reactor
British Library Conference Proceedings | 1996
|Biological phosphate and nitrogen removal in a biofilm sequencing batch reactor
British Library Conference Proceedings | 1996
|Taylor & Francis Verlag | 2016
|