A platform for research: civil engineering, architecture and urbanism
MHD Convection with Heat Generation in a Porous Cavity
Abstract The present study deals with the magnetic-field-affected heat generation–absorption undergoing natural convection in a differentially heated cavity packed with porous media. A two-dimensional porous cavity with adiabatic top and bottom is investigated numerically considering its left wall heated isothermally and right wall maintained at ambient temperature. The solution of the governing equations and subsequent post-processing is conducted using finite volume-based in-house CFD code. The flow through the porous medium has been modeled using Brinkman–Forchheimer–Darcy model (BFDM). The results obtained from the wide range of parameters are examined graphically using streamlines, isotherms, and average Nusselt number (Nu) plots and discussed to know the effects of different flow parameters like modified Rayleigh number (Ram = 1–1000), Darcy number (Da = 10−3 − 10−6), porosity (ε = 0.1 − 1.0), Hartmann number (Ha = 10 − 100) along with its inclination angle (γ = 0 − 180°), in the presence of heat generation and absorption. It is found that as the magnetic field strength increases, heat transfer rate decreases substantially, and it is further affected by heat generation–absorption parameter.
MHD Convection with Heat Generation in a Porous Cavity
Abstract The present study deals with the magnetic-field-affected heat generation–absorption undergoing natural convection in a differentially heated cavity packed with porous media. A two-dimensional porous cavity with adiabatic top and bottom is investigated numerically considering its left wall heated isothermally and right wall maintained at ambient temperature. The solution of the governing equations and subsequent post-processing is conducted using finite volume-based in-house CFD code. The flow through the porous medium has been modeled using Brinkman–Forchheimer–Darcy model (BFDM). The results obtained from the wide range of parameters are examined graphically using streamlines, isotherms, and average Nusselt number (Nu) plots and discussed to know the effects of different flow parameters like modified Rayleigh number (Ram = 1–1000), Darcy number (Da = 10−3 − 10−6), porosity (ε = 0.1 − 1.0), Hartmann number (Ha = 10 − 100) along with its inclination angle (γ = 0 − 180°), in the presence of heat generation and absorption. It is found that as the magnetic field strength increases, heat transfer rate decreases substantially, and it is further affected by heat generation–absorption parameter.
MHD Convection with Heat Generation in a Porous Cavity
Mukherjee, Soumyodeep (author) / Biswas, Nirmalendu (author) / Manna, Nirmal K. (author)
2019-01-01
23 pages
Article/Chapter (Book)
Electronic Resource
English
MHD Convection with Heat Generation in a Porous Cavity
TIBKAT | 2019
|Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid
British Library Online Contents | 2018
|British Library Online Contents | 2018
|