A platform for research: civil engineering, architecture and urbanism
Local and regional contributions to PM2.5 in the Beijing 2022 Winter Olympics infrastructure areas during haze episodes
The 2022 Winter Olympics is scheduled to take place in Beijing and Zhangjiakou, which were defined as OIAs (Olympic infrastructure areas) in this study. This study presents the characteristics and source apportionment of PM2.5 in the OIAs, China. The entire region of mainland China, except for the OIAs, was divided into 9 source regions, including four regions in the BTH(Beijing-Tianjin-Hebei) region, the four provinces surrounding the BTH and the remaining areas. Using CAMx/PSAT, the contributions of the nine regions to the PM2.5 concentration in the OIAs were simulated spatially and temporally. The simulated source apportionment results showed that the contribution of regional transportation was 48.78%, and when PM2.5 concentration was larger than 75 µg/m3 central Hebei was the largest contributor with a contribution of 19.18%, followed by Tianjin, northern Hebei, Shanxi, Inner Mongolia, Shandong, southern Hebei, Henan and Liaoning. Furthermore, the contribution from neighboring regions of the OIAs was 47.12%, which was nearly twice that of long-range transportation. Haze episodes were analyzed, and the results presented the importance of regional transportation during severe PM2.5 pollution periods. It was also found that they were associated with differences in pollution sources between Zhangjiakou and Beijing. Regional transportation was the main factor affecting PM2.5 pollution in Zhangjiakou due to its low local emissions. Stagnant weather with a low planetary boundary layer height and a low wind velocity prevented the local emitted pollutants in Beijing from being transported outside, and as a result, local emissions constituted a larger contribution in Beijing.
Local and regional contributions to PM2.5 in the Beijing 2022 Winter Olympics infrastructure areas during haze episodes
The 2022 Winter Olympics is scheduled to take place in Beijing and Zhangjiakou, which were defined as OIAs (Olympic infrastructure areas) in this study. This study presents the characteristics and source apportionment of PM2.5 in the OIAs, China. The entire region of mainland China, except for the OIAs, was divided into 9 source regions, including four regions in the BTH(Beijing-Tianjin-Hebei) region, the four provinces surrounding the BTH and the remaining areas. Using CAMx/PSAT, the contributions of the nine regions to the PM2.5 concentration in the OIAs were simulated spatially and temporally. The simulated source apportionment results showed that the contribution of regional transportation was 48.78%, and when PM2.5 concentration was larger than 75 µg/m3 central Hebei was the largest contributor with a contribution of 19.18%, followed by Tianjin, northern Hebei, Shanxi, Inner Mongolia, Shandong, southern Hebei, Henan and Liaoning. Furthermore, the contribution from neighboring regions of the OIAs was 47.12%, which was nearly twice that of long-range transportation. Haze episodes were analyzed, and the results presented the importance of regional transportation during severe PM2.5 pollution periods. It was also found that they were associated with differences in pollution sources between Zhangjiakou and Beijing. Regional transportation was the main factor affecting PM2.5 pollution in Zhangjiakou due to its low local emissions. Stagnant weather with a low planetary boundary layer height and a low wind velocity prevented the local emitted pollutants in Beijing from being transported outside, and as a result, local emissions constituted a larger contribution in Beijing.
Local and regional contributions to PM2.5 in the Beijing 2022 Winter Olympics infrastructure areas during haze episodes
Front. Environ. Sci. Eng.
Wang, Yue (author) / Shi, Mengshuang (author) / Lv, Zhaofeng (author) / Liu, Huan (author) / He, Kebin (author)
2021-12-01
Article (Journal)
Electronic Resource
English
Winter Olympics 2022 in Beijing: A Must-be Success Story
Taylor & Francis Verlag | 2020
|British Library Online Contents | 2008