A platform for research: civil engineering, architecture and urbanism
Anthropogenic Influence on Streamflow in the Mahi Bajaj Sagar Basin, India
Climate change and its impact on associated natural and manufactured systems have stressed water resources. Since the last decade, the flow of most rivers in Rajasthan has been showing a decrease in water. Mahi Sagar reservoir, one of the largest water reservoirs, is also experiencing a decline in river runoff due to climate change impact and human activities. The effect of climate change (CC) on regional hydrology imposes challenges because of the connection between the climate system and the hydrological cycles and the basin’s characteristics. Using daily climate data, this research was conducted using hydrological semi-distributed model, and a Soil Water Assessment Tool (SWAT) is verified to a baseline from 1990 to 2005. Subsequently, we reconstructed natural runoff for 2006–2018 without considering the local human impact. We observed short-term variation in streamflow throughout the impact period based on reconstructed streamflow and observed streamflow data. Trend analysis and the SWAT model were taken in the experiment to analyze the relative contribution of CC and human activities on streamflow. The outcome of the study showed that total relative change in the assessment period 2006–2011, 2012–2018, and 2006–2018 is 29%, 48%, and 46%, respectively, and for the same periods, impact by climate change 48%, − 4%, and 26.51%, respectively, and impact by human activities 51%, 104%, and 73.49% on streamflow.
Anthropogenic Influence on Streamflow in the Mahi Bajaj Sagar Basin, India
Climate change and its impact on associated natural and manufactured systems have stressed water resources. Since the last decade, the flow of most rivers in Rajasthan has been showing a decrease in water. Mahi Sagar reservoir, one of the largest water reservoirs, is also experiencing a decline in river runoff due to climate change impact and human activities. The effect of climate change (CC) on regional hydrology imposes challenges because of the connection between the climate system and the hydrological cycles and the basin’s characteristics. Using daily climate data, this research was conducted using hydrological semi-distributed model, and a Soil Water Assessment Tool (SWAT) is verified to a baseline from 1990 to 2005. Subsequently, we reconstructed natural runoff for 2006–2018 without considering the local human impact. We observed short-term variation in streamflow throughout the impact period based on reconstructed streamflow and observed streamflow data. Trend analysis and the SWAT model were taken in the experiment to analyze the relative contribution of CC and human activities on streamflow. The outcome of the study showed that total relative change in the assessment period 2006–2011, 2012–2018, and 2006–2018 is 29%, 48%, and 46%, respectively, and for the same periods, impact by climate change 48%, − 4%, and 26.51%, respectively, and impact by human activities 51%, 104%, and 73.49% on streamflow.
Anthropogenic Influence on Streamflow in the Mahi Bajaj Sagar Basin, India
Lecture Notes in Civil Engineering
Timbadiya, P. V. (editor) / Patel, P. L. (editor) / Singh, Vijay P. (editor) / Sharma, Priyank J. (editor) / Choudhary, Mithun (author) / Jat, Mahesh Kumar (author) / Choudhary, Mahender (author)
International Conference on Hydraulics, Water Resources and Coastal Engineering ; 2021
2023-05-01
16 pages
Article/Chapter (Book)
Electronic Resource
English
Engineering Index Backfile | 1961
|Hydro-Meteorological Characteristics of the 1973 Catastrophic Flood in the Mahi Basin, India
DOAJ | 2023
|