A platform for research: civil engineering, architecture and urbanism
Community diversity and distribution of ammonia-oxidizing archaea in marsh wetlands in the black soil zone in North-east China
Abstract Since its first detection, ammonia-oxidizing archaea (AOA) have been proven to be ubiquitous in aquatic and terrestrial ecosystems. In this study, two freshwater marsh wetlands- the Honghe wetland and Qixinghe wetland — in the black soil zone in North-east China were chosen to investigate the AOA community diversity and distribution in wetland soils with different vegetation and depth. In the Honghe wetland, two sampling locations were chosen as the dominant plant transited from Deyeuxia to Carex. In the Qixinghe wetland, one sample location that was dominated by Deyeuxia was chosen. Samples of each location were collected from three different depths, and Illumina MiSeq platform was used to generate the AOA amoA gene archive. The results showed that the AOA amoA genes in the soils of the two wetlands were affiliated with three lineages: Nitrososphaera, Nitrosotalea, and Nitrosopumilus clusters. The different dominant status of these AOA lineages indicated their differences in adapting to acidic habitat, oxygenic/hypoxic alternation, organic matter, and other environmental factors, suggesting high diversity among AOA in marsh soils. The main driver of the AOA community was pH, along with organic carbon and ammonium nitrogen, which also played an important role combined with many other environmental factors. Thus, soil physiochemical characteristics, rather than vegetation, were the main cause of AOA community diversity in the wetlands in the black soil zone in China.
Community diversity and distribution of ammonia-oxidizing archaea in marsh wetlands in the black soil zone in North-east China
Abstract Since its first detection, ammonia-oxidizing archaea (AOA) have been proven to be ubiquitous in aquatic and terrestrial ecosystems. In this study, two freshwater marsh wetlands- the Honghe wetland and Qixinghe wetland — in the black soil zone in North-east China were chosen to investigate the AOA community diversity and distribution in wetland soils with different vegetation and depth. In the Honghe wetland, two sampling locations were chosen as the dominant plant transited from Deyeuxia to Carex. In the Qixinghe wetland, one sample location that was dominated by Deyeuxia was chosen. Samples of each location were collected from three different depths, and Illumina MiSeq platform was used to generate the AOA amoA gene archive. The results showed that the AOA amoA genes in the soils of the two wetlands were affiliated with three lineages: Nitrososphaera, Nitrosotalea, and Nitrosopumilus clusters. The different dominant status of these AOA lineages indicated their differences in adapting to acidic habitat, oxygenic/hypoxic alternation, organic matter, and other environmental factors, suggesting high diversity among AOA in marsh soils. The main driver of the AOA community was pH, along with organic carbon and ammonium nitrogen, which also played an important role combined with many other environmental factors. Thus, soil physiochemical characteristics, rather than vegetation, were the main cause of AOA community diversity in the wetlands in the black soil zone in China.
Community diversity and distribution of ammonia-oxidizing archaea in marsh wetlands in the black soil zone in North-east China
Chen, Chunhong (author) / Liang, Hong (author) / Gao, Dawen (author)
Frontiers of Environmental Science & Engineering ; 13 ; 1-16
2019-07-10
16 pages
Article (Journal)
Electronic Resource
English
Snow Exclusion Does Not Affect Soil Ammonia-Oxidizing Bacteria and Archaea Communities
DOAJ | 2022
|IOP Institute of Physics | 2013
|