A platform for research: civil engineering, architecture and urbanism
Experimental Investigation of Mechanical Properties of Smart Textile Reinforced Concrete Pipes
Leakages in pipes results in a 35% loss of the total water supplied worldwide, which is a critical issue given the impact of climate change and global warming. Therefore, early leakage warning systems have to be developed in order to reduce the water losses occurring due to cracks and leakages in pipes. However, conventional pipes available today do not contain any integrated leakage detection mechanism. Hence, the proposed solution, of using conductive carbon fibres in the reinforcement as leakage sensors allowing for the fault and leakage determination, is being developed. This principle has paved the way for research into sustainable hybrid textile reinforced concrete (TRC) pipe systems. With the aim of realizing an industrial production method for TRC pipes, different grid-shaped textile reinforcement structures, with integrated sensory rovings, are developed for concrete pipes at the Institut fuer Textiltechnik (ITA) of RWTH Aachen University. This work forms the future basis of an automated pipe production.
The aim of this study is to characterise the mechanical properties of these new age TRC pipes. For this purpose, lab scale TRC pipes with a length of l = 500 mm, an outer diameter of do = 300 mm and a wall thickness of d = 25 mm are casted using these smart hybrid textile reinforcement structures made by using alkali-resistant (AR) glass and carbon rovings. Thereafter, mechanical tests for compressive strength of the TRC pipes are carried out according to the DIN EN 1916 standards. The results are evaluated and compared with each other.
Experimental Investigation of Mechanical Properties of Smart Textile Reinforced Concrete Pipes
Leakages in pipes results in a 35% loss of the total water supplied worldwide, which is a critical issue given the impact of climate change and global warming. Therefore, early leakage warning systems have to be developed in order to reduce the water losses occurring due to cracks and leakages in pipes. However, conventional pipes available today do not contain any integrated leakage detection mechanism. Hence, the proposed solution, of using conductive carbon fibres in the reinforcement as leakage sensors allowing for the fault and leakage determination, is being developed. This principle has paved the way for research into sustainable hybrid textile reinforced concrete (TRC) pipe systems. With the aim of realizing an industrial production method for TRC pipes, different grid-shaped textile reinforcement structures, with integrated sensory rovings, are developed for concrete pipes at the Institut fuer Textiltechnik (ITA) of RWTH Aachen University. This work forms the future basis of an automated pipe production.
The aim of this study is to characterise the mechanical properties of these new age TRC pipes. For this purpose, lab scale TRC pipes with a length of l = 500 mm, an outer diameter of do = 300 mm and a wall thickness of d = 25 mm are casted using these smart hybrid textile reinforcement structures made by using alkali-resistant (AR) glass and carbon rovings. Thereafter, mechanical tests for compressive strength of the TRC pipes are carried out according to the DIN EN 1916 standards. The results are evaluated and compared with each other.
Experimental Investigation of Mechanical Properties of Smart Textile Reinforced Concrete Pipes
RILEM Bookseries
Serna, Pedro (editor) / Llano-Torre, Aitor (editor) / Martí-Vargas, José R. (editor) / Navarro-Gregori, Juan (editor) / Dittel, Gozdem (author) / Wangler, Michelle (author) / Maiworm, Bastian (author) / Gries, Thomas (author)
RILEM-fib International Symposium on Fibre Reinforced Concrete ; 2020 ; Valencia, Spain
Fibre Reinforced Concrete: Improvements and Innovations ; Chapter: 87 ; 991-1000
RILEM Bookseries ; 30
2020-11-05
10 pages
Article/Chapter (Book)
Electronic Resource
English
Textile reinforced concrete multilayer composite pipes
Tema Archive | 2006
|Textile reinforced concrete multilayer composite pipes
British Library Conference Proceedings | 2006
|Experimental Investigation of Concrete Confinement with Textile Reinforced Concrete
Trans Tech Publications | 2015
|Pressure pipes made of textile-reinforced concrete and plastics
British Library Online Contents | 2007
|