A platform for research: civil engineering, architecture and urbanism
Prediction of Water Quality Parameters Using ANFIS Optimized by Intelligence Algorithms (Case Study: Gorganrood River)
Abstract Water quality management and control has high importance in planning and developing of water resources. This study investigated application of Genetic Algorithm (GA), Ant Colony Optimization for Continuous Domains (ACOR) and Differential Evolution (DE) in improving the performance of adaptive neuro-fuzzy inference system (ANFIS), for evaluating the quality parameters of Gorganroud River water, such as Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Total Hardness (TH). Accordingly, initially most suitable inputs were estimated for every model using sensitivity analysis and then all of the quality parameters were predicted using mentioned models. Investigations showed that for predicting EC and TH in test stage, ANFIS-DE with R2 values of 0.98 and 0.97, respectively and RMSE values of 73.03 and 49.55 and also MAPE values of 5.16 and 9.55, respectively were the most appropriate models. Also, ANFIS-DE and ANFIS-GA models had the best performance in prediction of SAR (R2 = 0.95, 0.91; RMSE = 0.43, 0.37 and MAPE = 13.43, 13.72) in test stage. It is noteworthy that ANFIS showed the best performance in prediction of all mentioned water quality parameters in training stage. The results indicated the ability of mentioned algorithms in improving the accuracy of ANFIS for predicting the quality parameters of river water.
Prediction of Water Quality Parameters Using ANFIS Optimized by Intelligence Algorithms (Case Study: Gorganrood River)
Abstract Water quality management and control has high importance in planning and developing of water resources. This study investigated application of Genetic Algorithm (GA), Ant Colony Optimization for Continuous Domains (ACOR) and Differential Evolution (DE) in improving the performance of adaptive neuro-fuzzy inference system (ANFIS), for evaluating the quality parameters of Gorganroud River water, such as Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Total Hardness (TH). Accordingly, initially most suitable inputs were estimated for every model using sensitivity analysis and then all of the quality parameters were predicted using mentioned models. Investigations showed that for predicting EC and TH in test stage, ANFIS-DE with R2 values of 0.98 and 0.97, respectively and RMSE values of 73.03 and 49.55 and also MAPE values of 5.16 and 9.55, respectively were the most appropriate models. Also, ANFIS-DE and ANFIS-GA models had the best performance in prediction of SAR (R2 = 0.95, 0.91; RMSE = 0.43, 0.37 and MAPE = 13.43, 13.72) in test stage. It is noteworthy that ANFIS showed the best performance in prediction of all mentioned water quality parameters in training stage. The results indicated the ability of mentioned algorithms in improving the accuracy of ANFIS for predicting the quality parameters of river water.
Prediction of Water Quality Parameters Using ANFIS Optimized by Intelligence Algorithms (Case Study: Gorganrood River)
Azad, Armin (author) / Karami, Hojat (author) / Farzin, Saeed (author) / Saeedian, Amir (author) / Kashi, Hamed (author) / Sayyahi, Fatemeh (author)
KSCE Journal of Civil Engineering ; 22 ; 2206-2213
2017-09-29
8 pages
Article (Journal)
Electronic Resource
English
British Library Conference Proceedings | 2007
|