A platform for research: civil engineering, architecture and urbanism
Flood Susceptibility Mapping Using Novel Hybrid Approach of Neural Network with Genetic Quantum Ensembles
Flood susceptibility mapping is an important method for flood research. In this paper, we combine a backpropagation neural network (BPNN) with a genetic quantum algorithm (GQA) for the first time to develop flood susceptibility mapping. The area on the Chinese side of the Tumen River Basin was selected as the research object. A set of flood conditioning factors was selected based on relevant literature and an actual situation and then validated using the chi-square test and correlation analysis. Different weights were assigned using stepwise weight assessment ratio analysis. Finally, modeling and flood susceptibility mapping using GQA-BPNN. As a reference, the same work was performed with both the pure BPNN and optimized BPNN using a genetic algorithm (GA). The results show that the area under the curve, root mean squared error, Nash-Sutcliffe coefficient and percentage of bias are significantly better for the GQA-BPNN than for the BPNN and GA-BPNN and that the flood sensitivity maps constructed by the GQA-BPNN have more flood points in high flood sensitivity areas. Therefore, the GQA-BPNN method can be considered an effective method for flood susceptibility mapping.
Flood Susceptibility Mapping Using Novel Hybrid Approach of Neural Network with Genetic Quantum Ensembles
Flood susceptibility mapping is an important method for flood research. In this paper, we combine a backpropagation neural network (BPNN) with a genetic quantum algorithm (GQA) for the first time to develop flood susceptibility mapping. The area on the Chinese side of the Tumen River Basin was selected as the research object. A set of flood conditioning factors was selected based on relevant literature and an actual situation and then validated using the chi-square test and correlation analysis. Different weights were assigned using stepwise weight assessment ratio analysis. Finally, modeling and flood susceptibility mapping using GQA-BPNN. As a reference, the same work was performed with both the pure BPNN and optimized BPNN using a genetic algorithm (GA). The results show that the area under the curve, root mean squared error, Nash-Sutcliffe coefficient and percentage of bias are significantly better for the GQA-BPNN than for the BPNN and GA-BPNN and that the flood sensitivity maps constructed by the GQA-BPNN have more flood points in high flood sensitivity areas. Therefore, the GQA-BPNN method can be considered an effective method for flood susceptibility mapping.
Flood Susceptibility Mapping Using Novel Hybrid Approach of Neural Network with Genetic Quantum Ensembles
KSCE J Civ Eng
Cui, Hao (author) / Quan, Hechun (author) / Jin, Ri (author) / Lin, Zhehao (author)
KSCE Journal of Civil Engineering ; 27 ; 431-441
2023-01-01
11 pages
Article (Journal)
Electronic Resource
English