A platform for research: civil engineering, architecture and urbanism
Predicting IRI Using Machine Learning Techniques
The behaviour of pavement structure to varying degrees of loads, climate conditions, traffic, drainage conditions and dimensions of road cause difficulty in deciding the maintenance/rehabilitation task on the pavement. International Roughness Index (IRI) is the most commonly used criteria for evaluating pavement performance and determining maintenance/rehabilitation requirements of the pavements. In a road network comprising hundreds of km of the road, it becomes difficult to accurately predict the road’s IRI. The data have been taken from a public database of roads, i.e. long-term pavement performance. In this study, machine learning models have been studied to understand/analyze the IRI of roads. The evaluation/performance of regression models has been done on the basis of commonly used statistical measures. Gradient boosting machine (GBM) model performed best on the test as well as train data set out of five used models, namely GBM, deep learning, extremely random forest, distributed random forest, and generalized linear model. Performance of GBM in the testing dataset had root mean square error (RMSE = 0.176003), root mean square log error (RMSLE = 0.074924), mean average error (MAE = 0.126345), mean square error (MSE = 0.030977), which was minimum of five models, and R2 (0.86572) which was maximum.
Predicting IRI Using Machine Learning Techniques
The behaviour of pavement structure to varying degrees of loads, climate conditions, traffic, drainage conditions and dimensions of road cause difficulty in deciding the maintenance/rehabilitation task on the pavement. International Roughness Index (IRI) is the most commonly used criteria for evaluating pavement performance and determining maintenance/rehabilitation requirements of the pavements. In a road network comprising hundreds of km of the road, it becomes difficult to accurately predict the road’s IRI. The data have been taken from a public database of roads, i.e. long-term pavement performance. In this study, machine learning models have been studied to understand/analyze the IRI of roads. The evaluation/performance of regression models has been done on the basis of commonly used statistical measures. Gradient boosting machine (GBM) model performed best on the test as well as train data set out of five used models, namely GBM, deep learning, extremely random forest, distributed random forest, and generalized linear model. Performance of GBM in the testing dataset had root mean square error (RMSE = 0.176003), root mean square log error (RMSLE = 0.074924), mean average error (MAE = 0.126345), mean square error (MSE = 0.030977), which was minimum of five models, and R2 (0.86572) which was maximum.
Predicting IRI Using Machine Learning Techniques
Int. J. Pavement Res. Technol.
Sharma, Ankit (author) / Sachdeva, S. N. (author) / Aggarwal, Praveen (author)
International Journal of Pavement Research and Technology ; 16 ; 128-137
2023-01-01
10 pages
Article (Journal)
Electronic Resource
English
Predicting disc cutter wear using two optimized machine learning techniques
Springer Verlag | 2024
|Predicting disc cutter wear using two optimized machine learning techniques
Springer Verlag | 2024
|