A platform for research: civil engineering, architecture and urbanism
Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace amounts of copper in water samples
Abstract A simple and efficient liquid-phase microextraction (LPME) technique was developed using ultrasound-assisted emulsification solidified floating organic drop microextraction (USAE-SFODME) combined with flame atomic absorption spectrometry, for the extraction and determination of trace copper in water samples. 1-(2-Pyridylazo)-2-naphthol (PAN) was used as chelating agent. Microextraction efficiency factors (including extraction solvent type, extraction volume, time, temperature, and pH), the amount of the chelating agent, and salt effect were investigated and optimized. Under the optimum extraction conditions, figures of merit of the proposed method were evaluated. The calibration graph was linear in the range of 20–600 μg·L−1 with a detection limit of 0.76 μg·L−1. The relative standard deviation (R.S.D) for ten replicate measurements of 20 and 400 μg·L−1 of copper was 3.83% and 2.65%, respectively. Finally, the proposed method was applied to tap water, river water, and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments.
Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace amounts of copper in water samples
Abstract A simple and efficient liquid-phase microextraction (LPME) technique was developed using ultrasound-assisted emulsification solidified floating organic drop microextraction (USAE-SFODME) combined with flame atomic absorption spectrometry, for the extraction and determination of trace copper in water samples. 1-(2-Pyridylazo)-2-naphthol (PAN) was used as chelating agent. Microextraction efficiency factors (including extraction solvent type, extraction volume, time, temperature, and pH), the amount of the chelating agent, and salt effect were investigated and optimized. Under the optimum extraction conditions, figures of merit of the proposed method were evaluated. The calibration graph was linear in the range of 20–600 μg·L−1 with a detection limit of 0.76 μg·L−1. The relative standard deviation (R.S.D) for ten replicate measurements of 20 and 400 μg·L−1 of copper was 3.83% and 2.65%, respectively. Finally, the proposed method was applied to tap water, river water, and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments.
Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace amounts of copper in water samples
Chang, Qingyun (author) / Zhang, Jingwen (author) / Du, Xin (author) / Ma, Jingjun (author) / Li, Jingci (author)
2010-04-23
9 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2017
|