A platform for research: civil engineering, architecture and urbanism
Dynamic Response and Long-Term Settlement of a Compacted Loess Embankment under Moving Train Loading
There have been many railway construction projects in the loess region of China. Embankment is typically required for rail projects in these regions, since the railway basement is restricted by longitudinal slope requirements. However, there has been little study of the dynamic response of compacted loess embankment under moving train loading. The 2.5D finite element method was adopted to investigate this process and characterize the effects of train speed, height of embankment, and axle weight on the dynamic behavior of subgrade. A rectangular core zone of subgrade was determined, and a prediction model was established to evaluate the long-term settlement of embankment generated by moving train loading. The results showed that embankment height had negligible influence on the variation of dynamic stress. Decays of stress amplitude in both the vertical and horizontal directions slowed with increased train speed. Additionally, the dynamic stress increased linearly with the increase in axle weight due to the linear stress-strain relationship of soil. In the practical speed range (≤ 100 m/s), the dynamic influence depth increased with increasing speed in a range of 3–6 m. A core zone depth of 6 m reflects the effects of moving train loading, with a width of 4 m. For practical conditions (v ≤ 100 m/s), only slight settlement of embankment was observed (≤ 6 mm). However, it is difficult to achieve the same physical parameters used in the experiments (moisture content and compaction degree) in engineering practice. Further work should explore long-term dynamic settlement with relation to the degree of compaction of the embankment.
Dynamic Response and Long-Term Settlement of a Compacted Loess Embankment under Moving Train Loading
There have been many railway construction projects in the loess region of China. Embankment is typically required for rail projects in these regions, since the railway basement is restricted by longitudinal slope requirements. However, there has been little study of the dynamic response of compacted loess embankment under moving train loading. The 2.5D finite element method was adopted to investigate this process and characterize the effects of train speed, height of embankment, and axle weight on the dynamic behavior of subgrade. A rectangular core zone of subgrade was determined, and a prediction model was established to evaluate the long-term settlement of embankment generated by moving train loading. The results showed that embankment height had negligible influence on the variation of dynamic stress. Decays of stress amplitude in both the vertical and horizontal directions slowed with increased train speed. Additionally, the dynamic stress increased linearly with the increase in axle weight due to the linear stress-strain relationship of soil. In the practical speed range (≤ 100 m/s), the dynamic influence depth increased with increasing speed in a range of 3–6 m. A core zone depth of 6 m reflects the effects of moving train loading, with a width of 4 m. For practical conditions (v ≤ 100 m/s), only slight settlement of embankment was observed (≤ 6 mm). However, it is difficult to achieve the same physical parameters used in the experiments (moisture content and compaction degree) in engineering practice. Further work should explore long-term dynamic settlement with relation to the degree of compaction of the embankment.
Dynamic Response and Long-Term Settlement of a Compacted Loess Embankment under Moving Train Loading
KSCE J Civ Eng
Wang, Rui (author) / Hu, Zhiping (author) / Ma, Jiakuan (author) / Ren, Xiang (author) / Li, Fangtao (author) / Zhang, Fei (author)
KSCE Journal of Civil Engineering ; 25 ; 4075-4087
2021-11-01
13 pages
Article (Journal)
Electronic Resource
English
Dynamic modulus and damping ratio of compacted loess under long-term traffic loading
Taylor & Francis Verlag | 2022
|A Case Study of Settlement Behaviour of a Dynamic Compacted High Rock Embankment
Online Contents | 2010
|A Case Study of Settlement Behaviour of a Dynamic Compacted High Rock Embankment
British Library Online Contents | 2010
|