A platform for research: civil engineering, architecture and urbanism
Residential Envelope Energy Efficient Design Exploration Preparing for Generative Design
The design of detached houses involves multiple choices to meet many criteria, such as energy performance, and zoning regulations. Many design factors, including the form of the house, often come into play making the design process more complicated and time-consuming. The number of designs and simulations performed is usually limited due to time and cost constraints. This study aims at proposing a Generative Design (GD) framework to automate the design process of detached houses, and simultaneously optimize many design aspects. Numerous design parameters mainly relating to the house geometry and its energy efficiency were included in the GD study. The GD framework was developed in Dynamo, an Autodesk Revit internal generative design tool that uses the Non-Dominated Sorting Genetic Algorithm (NSGA-II). The floorplan boundary lines having variable dimensions were first created in Dynamo to serve as a reference for walls, floors, roof, and other geometric components. Several Dynamo nodes such as “Walls.ByCurveAndLevel”, “Floor.ByOutlineTypeAndLevel, “Roof.ByOutlineTypeAndLevel”, and “FamilyInstance.ByFace” were utilized to generate houses with variable walls, floors, roof, windows, and doors, respectively. Afterward, the Dynamo graph was ready to be exported to create and run the GD study and generate different feasible design solutions. Preliminary results included a fully automated design of a single-family house envelope. The designer can run the GD study to generate, compare, and explore different design options, examining the geometry and analysis results to select a final design solution. The findings of this study will maximize the productivity of designers/developers and will tremendously reduce the financial strain and time consumed designing energy-efficient single-family houses using traditional techniques.
Residential Envelope Energy Efficient Design Exploration Preparing for Generative Design
The design of detached houses involves multiple choices to meet many criteria, such as energy performance, and zoning regulations. Many design factors, including the form of the house, often come into play making the design process more complicated and time-consuming. The number of designs and simulations performed is usually limited due to time and cost constraints. This study aims at proposing a Generative Design (GD) framework to automate the design process of detached houses, and simultaneously optimize many design aspects. Numerous design parameters mainly relating to the house geometry and its energy efficiency were included in the GD study. The GD framework was developed in Dynamo, an Autodesk Revit internal generative design tool that uses the Non-Dominated Sorting Genetic Algorithm (NSGA-II). The floorplan boundary lines having variable dimensions were first created in Dynamo to serve as a reference for walls, floors, roof, and other geometric components. Several Dynamo nodes such as “Walls.ByCurveAndLevel”, “Floor.ByOutlineTypeAndLevel, “Roof.ByOutlineTypeAndLevel”, and “FamilyInstance.ByFace” were utilized to generate houses with variable walls, floors, roof, windows, and doors, respectively. Afterward, the Dynamo graph was ready to be exported to create and run the GD study and generate different feasible design solutions. Preliminary results included a fully automated design of a single-family house envelope. The designer can run the GD study to generate, compare, and explore different design options, examining the geometry and analysis results to select a final design solution. The findings of this study will maximize the productivity of designers/developers and will tremendously reduce the financial strain and time consumed designing energy-efficient single-family houses using traditional techniques.
Residential Envelope Energy Efficient Design Exploration Preparing for Generative Design
Lecture Notes in Civil Engineering
Skatulla, Sebastian (editor) / Beushausen, Hans (editor) / Elias, Rita (author) / Issa, Raja R. A. (author)
International Conference on Computing in Civil and Building Engineering ; 2022 ; Cape Town, South Africa
Advances in Information Technology in Civil and Building Engineering ; Chapter: 25 ; 327-342
2023-09-30
16 pages
Article/Chapter (Book)
Electronic Resource
English
BIM-based generative design approach for integral residential energy-efficient façades
Elsevier | 2025
|Energy-efficient envelope design for high-rise residential buildings in Malaysia
Taylor & Francis Verlag | 2012
|Energy-efficient envelope design for high-rise residential buildings in Malaysia
British Library Online Contents | 2012
|Energy-efficient envelope design for high-rise residential buildings in Malaysia
British Library Online Contents | 2012
|Energy-efficient envelope design for high-rise residential buildings in Malaysia
Online Contents | 2012
|