A platform for research: civil engineering, architecture and urbanism
Dynamic compressive and flexural behaviors of ultra-rapid-hardening mortar containing polyethylene fibers
In this study, the dynamic, compressive, and flexural behaviors of ultra-rapid-hardening mortar (URHM) containing 2% polyethylene fiber are investigated. The results confirm the robust strain-hardening behavior of URHM at an early age of 4 h. Its tensile strength, strain capacity, and g value at 4 h were found to be 7.3 MPa, 5.1%, and 297.5 kJ/m3, respectively. The compressive and flexural strength and toughness of URHM increased with the strain rate. A higher loading rate led to a greater increase in the strength; the rate sensitivity was higher during flexure compared to that during compression. The highest dynamic increase factor (DIF) of the compressive strength was 1.75 up to a strain rate of 115/s; the highest DIF of the flexural strength was 3.34 up to a strain rate of 96/s. Its deflection-hardening behavior was converted to deflection-softening behavior under impact loads having a potential energy of 392 J or greater. Furthermore, the greater potential energy led to a lower energy dissipation rate, and more energy remained in the system. The rate sensitivity of the URHM under compression was similar to that of other fiber-reinforced concretes; however, its flexural strength was less sensitive to the strain rate than that of the others.
Dynamic compressive and flexural behaviors of ultra-rapid-hardening mortar containing polyethylene fibers
In this study, the dynamic, compressive, and flexural behaviors of ultra-rapid-hardening mortar (URHM) containing 2% polyethylene fiber are investigated. The results confirm the robust strain-hardening behavior of URHM at an early age of 4 h. Its tensile strength, strain capacity, and g value at 4 h were found to be 7.3 MPa, 5.1%, and 297.5 kJ/m3, respectively. The compressive and flexural strength and toughness of URHM increased with the strain rate. A higher loading rate led to a greater increase in the strength; the rate sensitivity was higher during flexure compared to that during compression. The highest dynamic increase factor (DIF) of the compressive strength was 1.75 up to a strain rate of 115/s; the highest DIF of the flexural strength was 3.34 up to a strain rate of 96/s. Its deflection-hardening behavior was converted to deflection-softening behavior under impact loads having a potential energy of 392 J or greater. Furthermore, the greater potential energy led to a lower energy dissipation rate, and more energy remained in the system. The rate sensitivity of the URHM under compression was similar to that of other fiber-reinforced concretes; however, its flexural strength was less sensitive to the strain rate than that of the others.
Dynamic compressive and flexural behaviors of ultra-rapid-hardening mortar containing polyethylene fibers
Archiv.Civ.Mech.Eng
Chun, Booki (author) / Shin, Wonsik (author) / Oh, Taekgeun (author) / Yoo, Doo-Yeol (author)
2021-04-28
Article (Journal)
Electronic Resource
English
ULTRA RAPID HARDENING GROUT MATERIAL, ULTRA RAPID HARDENING GROUT MORTAR, AND HARDENED BODY
European Patent Office | 2022
|ULTRA-RAPID HARDENING MORTAR MATERIAL FOR GROUT, AND MORTAR HARDENED PRODUCT
European Patent Office | 2024
|