A platform for research: civil engineering, architecture and urbanism
Identification of landslide susceptibility zones in Gish River basin, West Bengal, India
The occurrence of landslide in the hilly region of Darjeeling during monsoon season is a matter of serious concern. Every year this natural hazard damages the major roads at several places and thus disrupts the transport and communication system in this region. This paper tries to prepare a landslide susceptibility zone (LSZ) map for the Gish River basin. A total number of 16 spatial parameters have been taken for this study and these are categorised under six factor clusters or groups for example, triggering factors, protective factor, lithological factors, morphometric factors, hydrological factors and anthropogenic factors. The LSZ map is prepared by integrating all the parameters adopting the weighting base as logistic regression. The landslide susceptibility map shows that nearly 9.11% of the area falls under the very high landslide-susceptible zone while 40.28% of the area of the total basin lies under the very low landslide-susceptible zone. The landslide-susceptible model is validated through the receiver operating characteristic curve. This curve shows 86% success rate in defining landslide-susceptible zones and 83.40% prediction rate for the occurrence of landslides. The spatial relationship between the landslide susceptibility model and other factors’ groups shows that the morphometric factors’ cluster (mainly slope) is the focalone for the determination of landslide-susceptible zone.
Identification of landslide susceptibility zones in Gish River basin, West Bengal, India
The occurrence of landslide in the hilly region of Darjeeling during monsoon season is a matter of serious concern. Every year this natural hazard damages the major roads at several places and thus disrupts the transport and communication system in this region. This paper tries to prepare a landslide susceptibility zone (LSZ) map for the Gish River basin. A total number of 16 spatial parameters have been taken for this study and these are categorised under six factor clusters or groups for example, triggering factors, protective factor, lithological factors, morphometric factors, hydrological factors and anthropogenic factors. The LSZ map is prepared by integrating all the parameters adopting the weighting base as logistic regression. The landslide susceptibility map shows that nearly 9.11% of the area falls under the very high landslide-susceptible zone while 40.28% of the area of the total basin lies under the very low landslide-susceptible zone. The landslide-susceptible model is validated through the receiver operating characteristic curve. This curve shows 86% success rate in defining landslide-susceptible zones and 83.40% prediction rate for the occurrence of landslides. The spatial relationship between the landslide susceptibility model and other factors’ groups shows that the morphometric factors’ cluster (mainly slope) is the focalone for the determination of landslide-susceptible zone.
Identification of landslide susceptibility zones in Gish River basin, West Bengal, India
Basu, Tirthankar (author) / Pal, Swades (author)
2018-01-02
15 pages
Article (Journal)
Electronic Resource
English
Landslide Susceptibility Studies at Chalakudy River Basin
Springer Verlag | 2024
|Landslide Early Warning System in Kalimpong, West Bengal
Springer Verlag | 2022
|Landslide Early Warning System in Kalimpong, West Bengal
TIBKAT | 2022
|Human Induced Channel Planform Changes: Teesta River, West Bengal India
HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2012
|