A platform for research: civil engineering, architecture and urbanism
Comparing various fitting models to construct the tensile relaxation modulus master curve of asphalt mixes
This study was to compare the relative ability of seven common fitting models, i.e. Pure Power Law (PPL), Generalized Power Law (GPL), Modified Power Law (MPL), Modified Power Law Series (MPLS), Standard Sigmoid (SS), Generalized Logistic Sigmoid (GLS) and Prony Series (PS), to construct the tensile relaxation modulus master curve of dense graded asphalt mixes. To this end, cylindrical asphalt mixture specimens containing crushed stone aggregates with 60/70 penetration asphalt binder were fabricated using two aggregate gradations, two binder contents, two air void levels and three ageing conditions with three replicates. Direct tension relaxation modulus tests were conducted on the specimens at four different temperatures using the trapezoidal loading pattern at a low level of input strain. Tensile relaxation modulus master curves were constructed using all the fitting models together with the numerical shifting technique. Finally, both the graphical and statistical comparisons were made among the fitting models, and the best one was found to be PS, followed by MPLS, GLS, MPL, SS, GPL and PPL.
Comparing various fitting models to construct the tensile relaxation modulus master curve of asphalt mixes
This study was to compare the relative ability of seven common fitting models, i.e. Pure Power Law (PPL), Generalized Power Law (GPL), Modified Power Law (MPL), Modified Power Law Series (MPLS), Standard Sigmoid (SS), Generalized Logistic Sigmoid (GLS) and Prony Series (PS), to construct the tensile relaxation modulus master curve of dense graded asphalt mixes. To this end, cylindrical asphalt mixture specimens containing crushed stone aggregates with 60/70 penetration asphalt binder were fabricated using two aggregate gradations, two binder contents, two air void levels and three ageing conditions with three replicates. Direct tension relaxation modulus tests were conducted on the specimens at four different temperatures using the trapezoidal loading pattern at a low level of input strain. Tensile relaxation modulus master curves were constructed using all the fitting models together with the numerical shifting technique. Finally, both the graphical and statistical comparisons were made among the fitting models, and the best one was found to be PS, followed by MPLS, GLS, MPL, SS, GPL and PPL.
Comparing various fitting models to construct the tensile relaxation modulus master curve of asphalt mixes
Forough, Seyed Arash (author) / Nejad, Fereidoon Moghadas (author) / Khodaii, Ali (author)
International Journal of Pavement Engineering ; 17 ; 314-330
2016-04-20
17 pages
Article (Journal)
Electronic Resource
English
Taylor & Francis Verlag | 2015
|British Library Online Contents | 2011
|